
Information Coding / Computer Graphics, ISY, LiTH

Animation
Essentially a question of flipping between

many still images, fast enough

33(70)

33(70)

Information Coding / Computer Graphics, ISY, LiTH

Animation as a topic

• Page flipping, double-buffering!
!
• Sprite animation!
!
• Movement and posing!
!
• Collision detection and handling!
!
• Deformations

34(70)34(70)

Information Coding / Computer Graphics, ISY, LiTH

Double buffering!
!

Flicker-free animation

35(70)35(70)

Information Coding / Computer Graphics, ISY, LiTH

The double buffering problem!
!

When animating a scene with many objects in real time, it is not
just a question of showing images:!

!
• Erase the entire scene!

• Draw each visible object in new positions!
!

This procedure may be visible if done on-screen!

36(70)36(70)

Information Coding / Computer Graphics, ISY, LiTH

Single buffered animation!
!

Flicker

Screen update!
beam

If the beam passes over an area while it is erased,!
flicker will occur.

37(70)37(70)

Information Coding / Computer Graphics, ISY, LiTH

Solutions!
!

1) Don’t erase-and-redraw near the update beam!
!

Unreliable.!
Doesn’t work on all screens.!

!
2) Double buffering.!

!
Needs more memory. Otherwise easy to do and

reliable.

38(70)38(70)

Information Coding / Computer Graphics, ISY, LiTH

Double buffering
VRAM

Buffer 1 Buffer 2

VRAM

Buffer 1 Buffer 2

Choose buffer

Copy

Fixed output image buffer

Animation with double!
output buffers

Animation with a single!
output buffer

VRAM

39(70)39(70)

Information Coding / Computer Graphics, ISY, LiTH

Double buffered animation!
!

Tearing

Occurs if buffers switch while the screen is being redrawn.!
!
Synch with vsync to avoid.

Screen!
update!
beam

40(70)40(70)

Information Coding / Computer Graphics, ISY, LiTH

Built-in VBL sync (vsync)!
!

Modern systems have VBL sync built-in -
even mandatory double buffering. You

may need to turn ”vsync” off to test
maximum frame rate.

41(70)41(70)

Information Coding / Computer Graphics, ISY, LiTH

Double buffering in OpenGL!
!

Double buffer!
!

• Pass GLUT_DOUBLE to glutInitDisplayMode!
• glutSwapBuffers();!

!
Repeated redraw!

!
• glutRepeatingTimer() or timer callback with

glutPostRedisplay()!
• Update position variables

42(70)42(70)

Information Coding / Computer Graphics, ISY, LiTH

Sprite animation

2D animation based on 2D images.!
!

Extremely common in games! (Often indie
games and/or mobile games.)

43(70)43(70)

Information Coding / Computer Graphics, ISY, LiTH

Sprites in OpenGL

Use textured polygons with
transparency! (Like billboards but

without 3D.)!
!

Special “blitter” calls existed in GL2, but
they were not guaranteed to be fast!

44(70)44(70)

Information Coding / Computer Graphics, ISY, LiTH

Pseudo-3D effects
Scaled sprites on background with perspective:!
!
Depth cue by size!
!
Side-scrolling with parallax scroll:!
!
Depth cue by movement!
!
Depth due by shadows!
!
Distance between object and shadow gives important information

45(70)45(70)

Information Coding / Computer Graphics, ISY, LiTH

Depth from shadows

46(70)46(70)

Information Coding / Computer Graphics, ISY, LiTH

Depth from size

47(70)47(70)

Information Coding / Computer Graphics, ISY, LiTH

Depth from movement!
!

Parallax scroll

Classic example:
Moon Patrol

48(70)48(70)

Information Coding / Computer Graphics, ISY, LiTH

Pseudo-3D effects vs 3D!
!

• Depth from size = perspective projection!
!

• Parallax scroll: Comes for free to some extent,
but can be emphasized with cameras observing

the viewer!
!

• Depth from shadows: That is why shadows are
important in 3D! It is needed for ”full 3D”

experience.

49(70)49(70)

Information Coding / Computer Graphics, ISY, LiTH

Animation techniques for moving
objects

• Procedural animation!
!
• Physics-based animation!
!
• Pre-programmed animation paths

50(70)50(70)

Information Coding / Computer Graphics, ISY, LiTH

Animation paths!
!

Use Catmull-Rom splines! Predictable,
smooth, continuous!

51(70)51(70)

Information Coding / Computer Graphics, ISY, LiTH

Character animation
• Pre-defined poses!
!
• Key-frame animation!
!
• Forward kinematics!
!
• Inverse kinematics!
!
• Physics based animation!
!
• Motion capture

52(70)52(70)

Information Coding / Computer Graphics, ISY, LiTH

Key-frame animation
Pre-rendered animations!
!
Key-frames are designed at suitable intervals!
!
Frames between keyframes are interpolated (morphed)!
!
Very common method for real-time animation

53(70)53(70)

Information Coding / Computer Graphics, ISY, LiTH

Kinematics
Kinematics = movement without forces!
!
Forward kinematics:!
!
Specify poses by specifying rotation of joints. Easy to
implement, but specifying poses is much trial-and-
error.!
!
Inverse kinematics:!
!
Goal-driven posing. Specify where some part should
go (i.e. a hand) and calculate necessary rotations

54(70)54(70)

Information Coding / Computer Graphics, ISY, LiTH

Motion capture
Extremely common in movies!!
!
• Record by natural visuals only!
!
• Tracking markers!
!
• Active sensors on the body!
!
Perfect for pre-generated animations.

55(70)55(70)

Information Coding / Computer Graphics, ISY, LiTH

Face animation
Hard problem - we are very sensitive to errors!!
!
Animate by action units (muscle based) or face animation
parameters (extreme detail)!
!
FAPs part of the MPEG-4 standard.

The Candide model

56(70)56(70)

Information Coding / Computer Graphics, ISY, LiTH

Some advanced animation topics
• Bones and skinning systems!
!
• Deformations!
!
• Physics-based animation!
!
• Quaternions, SLERP!
!
Mainly subjects for later courses

57(70)57(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle systems

Spectacular effects with little effort!!
!
Many small moving objects.!
!
• Explosions!
• Water!
• Fire!
• Snow !
• Rain

58(70)58(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

Example: Water

No randomness - bad

59(70)59(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

Example: Water

60(70)60(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

• Initial position!
• Initial speed (usually with some

randomness))!
!

• Movement (usually independent, physically
realistic)!

!
• Termination rule (e.g. hits ground, fades

away after some time...)

61(70)61(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle system!
!

Movement according to fundamental
physics:!

!
acceleration = gravity + forces/mass!

speed = speed + acceleration!
position = position + speed!

!
“Euler integration”

62(70)62(70)

Information Coding / Computer Graphics, ISY, LiTH

Particle system on GPU!
!

CPU-driven particle systems OK up to a
certain size!

!
Data transfer (new positions) of all particles

can be a bottleneck!
!

Can the whole particle system be computed
on the GPU?

63(70)63(70)

Information Coding / Computer Graphics, ISY, LiTH

Texture based particle systems!
!

Use textures to store x, y, z, dx, dy, dz!
!

Store as color components (r, g, b)!
!

Needs advanced texturing features (render
to texture, floating-point buffers)!

!
Particles as billboards. Each polygon must

identify its particle data.

64(70)64(70)

Information Coding / Computer Graphics, ISY, LiTH

Separate compute kernels for
particle systems!

!
CUDA, OpenCL, Compute shaders!

!
Free choice of data formats!

!
Less integration with the OpenGL pipeline

65(70)65(70)

Information Coding / Computer Graphics, ISY, LiTH

Drawing particle systems!
!

Large number of very simple models
(billboards)!!

!
Modest demands on GPU, but very large

number of function calls!!
!

Solution: Instancing

66(70)66(70)

Information Coding / Computer Graphics, ISY, LiTH

Instancing!
!

Draw a large number of the same model!!
!

Each instance has an index, the instance number.!
!

glDrawArraysInstanced(GL_TRIANGLES, 0, 3, 10);!
!

draws a triangle 10 times!!
!

gl_InstanceID tells the shader which instance we
have. Use for affecting position.

67(70)67(70)

Information Coding / Computer Graphics, ISY, LiTH

Billboard instancing demo

#version 150!
!
in vec3 in_Position;!
uniform mat4 myMatrix;!
uniform float angle;!
uniform float slope;!
out vec2 texCoord;!
!
void main(void)!
{!
!mat4 r;!
!float a = angle + gl_InstanceID * 0.5;!
!float rr = 1.0 - slope * gl_InstanceID * 0.01;!
!r[0] = rr*vec4(cos(a), -sin(a), 0, 0);!
!r[1] = rr*vec4(sin(a), cos(a), 0, 0);!
!r[2] = vec4(0, 0, 1, 0);!
!r[3] = vec4(0, 0, 0, 1);!
!texCoord.s = in_Position.x+0.5;!
!texCoord.t = in_Position.y+0.5;!
!gl_Position = r * myMatrix * vec4(in_Position,
1.0);!
}

Position trivially affected!
by gl_Instance IDOne single call to!

glDrawArraysInstanced

68(70)68(70)

Information Coding / Computer Graphics, ISY, LiTH

Instancing complex models!
!

Less significant; A more complex model puts enough
load on the system to hide the impact of instancing.

69(70)69(70)

Information Coding / Computer Graphics, ISY, LiTH

Basic: Start on CPU!
Advanced: Go for GPU acceleration!

!
Performance is important, but GPU based
particle systems are beyond basic course

goals.

70(70)70(70)

