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Lecture 10!
!

Large worlds 2:!
!

More on frustum culling!
!

Occlusion culling!
!

Level of detail!
!

Billboards
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High-level VSD!
!

Large scenes, large or very large polygon count.!
!

Only a small part of the scene is visible at a given time!!
!

Process polygons in groups, with some kind of spatial 
information! Remove many polygons with each decision.!

!
BSP trees (revisited)!

Octrees!
Domain-specific culling!

Portals!
PVS
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Frustum culling!
!

Create plane equations for each frustum side!
!

Transform to world coordinates!
!

Test against bounding spheres of objects

Viewing frustum
Viewing frustum
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BSP trees for high-level VSD

BSP trees simpify frustum culling!!
!
Any node in a BSP tree is a convex volume!!
!
Whenever a volume falls outside the clipping!
frustum, ALL polygons below that node are!
removed!

BSP = Binary Space Partitioning
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Frustum culling using a BSP tree

Viewing frustum
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Frustum culling using a BSP tree:!
!

Usually axis aligned - ”kd-tree”!
!

Very simple tests
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Building a kd-tree!
!

Split at median: Half of the geometry in each side 
of the splitting plane. Balanced kd-tree.

Median - split here

Middle - don’t split here
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Octrees:!
!

Non-uniform hierarcical space subdivision!
!

Split cells in 8 until sufficient simplicity is achieved.

Viewing frustum

8(63)8(63)



Information Coding / Computer Graphics, ISY, LiTH

Uniform space subdivision!
!

Simple common case: Terrain defined by a regular grid

Viewing frustum
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Map the frustum edges to the grid coordinates!
!

Draw all polygons between edges

Viewing frustum

Cheap quick hack version:!
!

Find the bounding box of the frustum. Gives a simple 2D rectangle with 
grid spaces to draw. Up to 50% unnecessary polygons.
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Grid, alternative approach: quadtree

Viewing frustum
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Real-world example: Bugdom series
Fairly sparse environment, frustum culling is sufficient.
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Step 2: Occlusion culling
Even though we can remove all polygons outside the 
vieweing frustum, polygons within often occlude each 
other.!
!
How do you know what polygons in the viewing 
frustum are hidden?!
!
• Portals!
!
• Potentially Visible Set
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Cells and portals method!
!

(often referred to only as “portals”)!
!

Suitable for buildings, with many enclosures.!
!

Split the world into smaller parts, create 
connections as “portals” between them. (Dark 

Forces, Tomb Raider)!
!

Each portal is a branch in an adjacency graph!
!

Intuitive and (fairly) simple, but inefficient for 
outdoor scenes.
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Portals

When you find a “portal”, clip to it and render the next room

Polygons are grouped into cells, “rooms”
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Real-world example: Dark Forces
Level editor reveals portal-based engine

Edit levels by drawing 2D polygons, connect them as portals!
!
Notable limitation in game: Two windows/openings can never be 
on top of each other!
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Portal transformations
Nothing stops you from putting a transformation!
in your portals!
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...a trick used in a well-known game,!
named after the technique!
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Potentially visible set (PVS)!
!

A bit list for some part of the world (cell), 
specifying what polygons may be visible. (Quake)!

!
The list is huge, but can be compressed.!

!
Pre-compute the list for a static scene.!

!
Use BSP trees for creating cells automatically.
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Potentially Visible Set
More general method, faster for very complex scenes.

All polygons that may be of!
interest are looked up from the PVS list
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Pre-generating the PVS!
!

Done either for a point or for a cell!
!

1) Image-space method!
!

2) Object-space method
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Image-space PVS generation!
!

Render 6 images, all covering 1/6 of direction space!
!

Render with flat shading, unique colors for each polygon or 
groups of polygons (e.g. model)

Inspect the resulting images. For every color that appears, 
the corresponding polygon(s) is/are added to the PVS

Render to all sides of a cube around the cell
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Conclusions about Visibility 
processing/ High level VSD:!

!
• Frustum culling easy!!

!
• Doesn’t have to be perfect - 
some waste at edges are OK!

!
• Complex scenes can need more
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