
Information Coding / Computer Graphics, ISY, LiTH

Lecture 10!
!

Large worlds 2:!
!

More on frustum culling!
!

Occlusion culling!
!

Level of detail!
!

Billboards

1(63)

1(63)



Information Coding / Computer Graphics, ISY, LiTH

High-level VSD!
!

Large scenes, large or very large polygon count.!
!

Only a small part of the scene is visible at a given time!!
!

Process polygons in groups, with some kind of spatial 
information! Remove many polygons with each decision.!

!
BSP trees (revisited)!

Octrees!
Domain-specific culling!

Portals!
PVS

2(63)2(63)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling!
!

Create plane equations for each frustum side!
!

Transform to world coordinates!
!

Test against bounding spheres of objects

Viewing frustum
Viewing frustum

3(63)3(63)



Information Coding / Computer Graphics, ISY, LiTH

BSP trees for high-level VSD

BSP trees simpify frustum culling!!
!
Any node in a BSP tree is a convex volume!!
!
Whenever a volume falls outside the clipping!
frustum, ALL polygons below that node are!
removed!

BSP = Binary Space Partitioning

4(63)4(63)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling using a BSP tree

Viewing frustum

1

2

3

6

7

4

5
1

2

4

3

75 6

5(63)5(63)



Information Coding / Computer Graphics, ISY, LiTH

Frustum culling using a BSP tree:!
!

Usually axis aligned - ”kd-tree”!
!

Very simple tests

6(63)6(63)



Information Coding / Computer Graphics, ISY, LiTH

Building a kd-tree!
!

Split at median: Half of the geometry in each side 
of the splitting plane. Balanced kd-tree.

Median - split here

Middle - don’t split here

7(63)7(63)



Information Coding / Computer Graphics, ISY, LiTH

Octrees:!
!

Non-uniform hierarcical space subdivision!
!

Split cells in 8 until sufficient simplicity is achieved.

Viewing frustum

8(63)8(63)



Information Coding / Computer Graphics, ISY, LiTH

Uniform space subdivision!
!

Simple common case: Terrain defined by a regular grid

Viewing frustum

9(63)9(63)



Information Coding / Computer Graphics, ISY, LiTH

Map the frustum edges to the grid coordinates!
!

Draw all polygons between edges

Viewing frustum

Cheap quick hack version:!
!

Find the bounding box of the frustum. Gives a simple 2D rectangle with 
grid spaces to draw. Up to 50% unnecessary polygons.

10(63)10(63)



Information Coding / Computer Graphics, ISY, LiTH

Grid, alternative approach: quadtree

Viewing frustum

11(63)11(63)



Information Coding / Computer Graphics, ISY, LiTH

Real-world example: Bugdom series
Fairly sparse environment, frustum culling is sufficient.

12(63)12(63)



Information Coding / Computer Graphics, ISY, LiTH

Step 2: Occlusion culling
Even though we can remove all polygons outside the 
vieweing frustum, polygons within often occlude each 
other.!
!
How do you know what polygons in the viewing 
frustum are hidden?!
!
• Portals!
!
• Potentially Visible Set

13(63)13(63)



Information Coding / Computer Graphics, ISY, LiTH

Cells and portals method!
!

(often referred to only as “portals”)!
!

Suitable for buildings, with many enclosures.!
!

Split the world into smaller parts, create 
connections as “portals” between them. (Dark 

Forces, Tomb Raider)!
!

Each portal is a branch in an adjacency graph!
!

Intuitive and (fairly) simple, but inefficient for 
outdoor scenes.

14(63)14(63)



Information Coding / Computer Graphics, ISY, LiTH

Portals

When you find a “portal”, clip to it and render the next room

Polygons are grouped into cells, “rooms”

15(63)15(63)



Information Coding / Computer Graphics, ISY, LiTH

Real-world example: Dark Forces
Level editor reveals portal-based engine

Edit levels by drawing 2D polygons, connect them as portals!
!
Notable limitation in game: Two windows/openings can never be 
on top of each other!

16(63)16(63)



Information Coding / Computer Graphics, ISY, LiTH

Portal transformations
Nothing stops you from putting a transformation!
in your portals!

17(63)17(63)



Information Coding / Computer Graphics, ISY, LiTH

...a trick used in a well-known game,!
named after the technique!

18(63)18(63)



Information Coding / Computer Graphics, ISY, LiTH

Potentially visible set (PVS)!
!

A bit list for some part of the world (cell), 
specifying what polygons may be visible. (Quake)!

!
The list is huge, but can be compressed.!

!
Pre-compute the list for a static scene.!

!
Use BSP trees for creating cells automatically.

19(63)19(63)



Information Coding / Computer Graphics, ISY, LiTH

Potentially Visible Set
More general method, faster for very complex scenes.

All polygons that may be of!
interest are looked up from the PVS list

20(63)20(63)



Information Coding / Computer Graphics, ISY, LiTH

Pre-generating the PVS!
!

Done either for a point or for a cell!
!

1) Image-space method!
!

2) Object-space method

21(63)21(63)



Information Coding / Computer Graphics, ISY, LiTH

Image-space PVS generation!
!

Render 6 images, all covering 1/6 of direction space!
!

Render with flat shading, unique colors for each polygon or 
groups of polygons (e.g. model)

Inspect the resulting images. For every color that appears, 
the corresponding polygon(s) is/are added to the PVS

Render to all sides of a cube around the cell

22(63)22(63)



Information Coding / Computer Graphics, ISY, LiTH

Conclusions about Visibility 
processing/ High level VSD:!

!
• Frustum culling easy!!

!
• Doesn’t have to be perfect - 
some waste at edges are OK!

!
• Complex scenes can need more

23(63)23(63)


