
Information Coding / Computer Graphics, ISY, LiTH

!
TSBK 07!

Computer Graphics!
Ingemar Ragnemalm, ISY

Information Coding / Computer Graphics, ISY, LiTH

!
Lecture 7!

!
More bump mapping!

Light mapping!
Normal matrix!

Painter's algorithm!
Transparency

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping
Simulates surface structure by manipulating

the normal vector

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - model
Surface with normal vectors

Bump map: scalar function of!
the texture coordinates

Modulate the surface by the bump!
function, along normal

Calculate new normals

Resulting normal vectors

Information Coding / Computer Graphics, ISY, LiTH

Bump mapping - the coordinate
systems

Input:!
A point p, normal vector n!
Texture coordinates s(p), t(p)!
Directions of texture coordinates s, t!
The bump function b(s,t)!
!
Calculate the partial derivative of the bump function, bs and bt!
!
n’ = n + bt * (s x n) + bs * (t x n)!
!
or, if s, t, n are orthogonal!
!
n’ = n + bs * s + bt * t

Information Coding / Computer Graphics, ISY, LiTH

Texture coordinate system!
!

How do we find the s and t vectors? We have the
texture coordinates but no coordinate system!!

!
Cross product with normal vector? With what?

Information Coding / Computer Graphics, ISY, LiTH

Faking it!
!

Cross product with absolutely anything!!
!

s = x ✕ n / |x ✕ n|!
t = n ✕ s!

!
Works for some cases. (Noise bump maps in

particular.!
!

But we can do better!

Information Coding / Computer Graphics, ISY, LiTH

Trivial geometry!
!

Very easy for a cube. Comfortable test case.

s^

t^

Information Coding / Computer Graphics, ISY, LiTH

Lengyel's method!
!

Derive through steps by s and t in xyz space!
!

Straight and clean method using matrix algebra!
!

Express two line segments as function of s and t,
find the inverse!

Information Coding / Computer Graphics, ISY, LiTH

Given a triangle with texture coordinates,!
find basis vectors for texture coordinates!

Take edge ab, split to components!
along s and t. Express as matrix.!
Find s and t by matrix inverse!

Lengyel's method

Information Coding / Computer Graphics, ISY, LiTH

float ds1 = sb - sa; float ds2 = sc - sa;!
float dt1 = tb - ta; float dt2 = tc - ta;!
vec3 s, t;!
float r = 1/(ds1 * dt2 - dt1 * ds2);!
s = (ab * dt2 - ac * dt1) * r;!
t = (ac * ds1 - ab * ds2) * r;

Lengyel's method!
!

in program code - fairly simple!

Note! Vector operations!

Information Coding / Computer Graphics, ISY, LiTH

Approximative method!
!

Let each edge of a polygon contribute to s and t
depending on their variation in s and t!!

!
Contribution to s from each edge = the edge direction!

normalized times the variation in s.

Information Coding / Computer Graphics, ISY, LiTH

Approximative method

Information Coding / Computer Graphics, ISY, LiTH

Both methods give good results for
complicated models!

Information Coding / Computer Graphics, ISY, LiTH

Coordinate systems!
!

• View and world coordinates!
• Texture coordinates!
• Tangent coordinates!

!
Light source often given in view coordinates!

Bump map given in texture coordinates!
Normal vector in model or view coordinates!

!
We must convert between these coordinate systems! Light
is calculated with vectors in the same coordinate system!

Information Coding / Computer Graphics, ISY, LiTH

Model to view: normalMatrix!
!

sv = normalMatrix * s!
tv = normalMatrix * t!
nv = normalMatrix * n!

!
View to texture:

Mvt =
sv!
tv!
nv

=

Coordinate systems!

svx svy svz!
tvx tvy tvz!

nvx nvy nvz

Information Coding / Computer Graphics, ISY, LiTH

Coordinate system!
!

sv is the tangent vector (often called t i other texts)!
tv bitangent (not binormal)!

!
Texture space = basis with vectors along texture variations!

!
Tangent space = orthonormal basis in texture space!

!
Tangent space often good approximation to texture space

Information Coding / Computer Graphics, ISY, LiTH

More definitions!
!

bump map = picture with height values!
!

normal map = picture with pre-calculated normal vectors!
!

(These are sometimes confused)

Information Coding / Computer Graphics, ISY, LiTH

bs = db/ds!
bt = db/dt!

!
n’ = nv + bs·sv + bt·tv (”in”)!

!
or!
!

n’ = nv - bs·sv - bt·tv (”ut”)

Calc of modified normal vector!
(view coordinates)

Information Coding / Computer Graphics, ISY, LiTH

!
bs = db/ds!
bt = db/dt!

!
n’ = + normering!

!
!

Really easy! BUT, the light and view directions must
be transformed to texture coordinates!!

!
lt = Mvt * l

bs!
bt!
1

Calc of modified normal vector!
(texture coordinates)

Information Coding / Computer Graphics, ISY, LiTH

Normal mapping!
!

Precalculate bs och bt, save as picture!!
!

-bs = b[s, t] - b[s+1, t]!
-bt = b[s, t] - b[s, t+1]!

1!
!

Normalize!

Information Coding / Computer Graphics, ISY, LiTH

Storage in texture!
!

”Scale and bias”:!
!

R = (ds+1)/2!
G = (dt+1)/2!

!
Fetch from texture:!

!
ds = 2R - 1!
dt = 2G - 1!

!
nt = (x, y, z)

(Why?)

Information Coding / Computer Graphics, ISY, LiTH

Example of normal map

Information Coding / Computer Graphics, ISY, LiTH

Bump map in my example

!
Bump map Normal map

Information Coding / Computer Graphics, ISY, LiTH

Light mapping!
!

Applying pre-calculated lighting to a model!
!

Saves real-time processing time for models with static lighting!
!

Allows high-quality lighting with high performance

(Image from Wikipedia)

Information Coding / Computer Graphics, ISY, LiTH

Light mapping!
!

Two approaches:!
!

• Vertex-level light mapping!
• Light map textures!

!
Both methods are high-performance and require little

memory!

Information Coding / Computer Graphics, ISY, LiTH

Vertex-level light mapping!
!

Calculate lighting per vertex!
Apply with glColor!

Render with Gouraud shading!
!

Trivial to use with textures. Very fast and low memory
demand. Limited quality,

Information Coding / Computer Graphics, ISY, LiTH

Light map textures!
!

Pre-calculate image any way you like (e.g. radiosity)!
!

Allows arbitrary precision with low processing demand!
!

Images usually very small, but can be made large when
needed

Information Coding / Computer Graphics, ISY, LiTH

Light map textures!
!

Texture maps and light maps can be applied to the same
surface by multitexturing.!

!
Texture values (texels) are multiplied by light map values.

Information Coding / Computer Graphics, ISY, LiTH

Light map textures!
!

Generation:!
!

1. Hand-painted!
2. Ray-tracing!
3. Radiosity!

4. Provided by 3D tools!
!

Generate a palette of light maps, reuse within some tolerance

