Information Coding / Computer Graphics, ISY, LiTH

TSBK 07

Computer Graphics
Ingemar Ragnemalm, ISY

..........

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
% wj

Lecture 5
3D graphics part 3

lllumination
lllumination applied: Shading

Surface detail: Mappings
Texture mapping

..........

‘% Information Coding / Computer Graphics, ISY, LiTH

Hlumination

We know where to put a polygon. Now, what should we fill it with? What pixel
value should we choose?

Several factors to take into account. The most important ones:

- Shading, illumination.
* Texture mapping.

Shading is determined according to an illumination model.

Information Coding / Computer Graphics, ISY, LiTH

Light sources

|
\‘/ Reflecting surface

/\\

Light source\

Resulting light intensity £\

o COMNG

Information Coding / Computer Graphics, ISY, LiTH

Light sources

N
@ —

/N C)
Small sources can be modelled as point light source

Others can be modelled as distributed light sources

Information Coding / Computer Graphics, ISY, LiTH

Reflections

Diffuse reflection Specular reflection

<

Paper

>

Plastic Metal Mirror

...........

"d’&: Information Coding / Computer Graphics, ISY, LiTH
% v/

3-component
illumination model

A common simple illumination model is
built from three components:

Ambient light
Diffuse reflections

Specular reflections

\\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Ambient light

Same everywhere!
lamb = Kd ™ la
/ |
Light emitted Diffuse Ambient light
from surface reflectivity level of scene

"d'&l Information Coding / Computer Graphics, ISY, LiTH
4

/ll
4,
A"\t;

Diffuse reflections

p |deal diffuse reflector =
-~ @®- Lambertian surface

Incoming light produces same
) intensity in all directions!

TN

..........

"d’*‘l Information Coding / Computer Graphics, ISY, LiTH

Lambert’s cosine law

lqiff = Kq™l*cos 6

\\/ A \

. - Light level of
0 Light emitted light source
from surface
Diffuse reflectivity

AT

Information Coding / Computer Graphics, ISY, LiTH

Example: Diffuse sphere

Kg=1
| =0.9

|a=0.1

...........

‘g Information Coding / Computer Graphics, ISY, LiTH

Dot product is nicer than angles!

—@- COS O =sS8'n

lgiff = Kg*l,*s*n

...........

"d’*‘l Information Coding / Computer Graphics, ISY, LiTH
<4

Specular reflections

o ~Incoming light produces higher
“\‘ intensity around the mirroring angle!
-
A
The width of the highlight
\ varies with surface types!

7T

OIMNe

Information Coding / Computer Graphics, ISY, LiTH

The Phong model

lspec = W(0)™1|*cosa ¢

or

lspec = Ks™l|"cos2 ¢

COS ¢ =rV

||||||

Information Coding / Computer Graphics, ISY, LiTH

Calculation of R

Mirror s by n!

|||||||||

Information Coding / Computer Graphics, ISY, LiTH

Total contribution from one
light source

/
— @ lamb = Kd ™ |a
\

lgitt = Kg™l1*s°n

n r

SGG(I)

\Itotal = lamb + laitt + lspec

lspec = ks 1" (r-v)a

g Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
L

Clamping shading

Note that the three-component light model
will produce negative light!

This will cause problems in scenes with
several light sources!

N

—

/\\ ~+ _

To avoid problems, clamp the resulting
value, e.g. max(0, light)

...........

‘g Information Coding / Computer Graphics, ISY, LiTH
=

Complete formula

| = Kg * la+ lair + 3 (Kg*l*max(0, s-n) + Ispec = Ks*I*max(0, r-v)a))

where 2 sums over all light sources

- gﬂ‘"k‘ °

.i’cj’ \o
B

Information Coding / Computer Graphics, ISY, LiTH

Examples
Diffuse surface, kd =0.9

Specular surface, n = 1

kg =0.45
Specular surface, n =5 ks = 0.5
i =1.0

Specular surface, n = 25 la =01

Specular surface, n = 125

Information Coding / Computer Graphics, ISY, LiTH

Examples

Specular surface, n =5
Specular surface, n = 25

Specular surface, n = 125

Kg =0.45
Ks = 0.5
i =1.0
la = 0.1

Information Coding / Computer Graphics, ISY, LiTH

Alternative formulation
Blinn-Phong

Halfway vector
h=(s+v)/Is + vl
Ispec — kS*I|*COSn o =

= lspec = Ks* (N - h)

Information Coding / Computer Graphics, ISY, LiTH

Advanced illumination models

Make kg a function of the viewing angle -
better modelling of glass and paper

BRDF - highly general multi-dimensional
function

Information Coding / Computer Graphics, ISY, LiTH

Global illumination models
Radiosity: Models light exchange recusively
Ray-tracing, trace viewing rays.

Photon mapping, “backwards ray-tracing”,
trace lighting rays.

Information Coding / Computer Graphics, ISY, LiTH

Polygon shading

Using the illumination
models in high-speed
polygon rendering

- COMNg
A = (n
K %t
o -
e -
. -
< .
1
m »

Information Coding / Computer Graphics, ISY, LiTH

Three ways to render
a shaded polygon:

Flat shading
Gouraud shading
Phong shading

‘d Information Coding / Computer Graphics, ISY, LiTH
=

Flat shading
Intensity calculated once and for all for the whole
polygon
E.g. Ip = kg-N-L
|
N
@

d Information Coding / Computer Graphics, ISY, LiTH
4

“
4,
%“. » g

Flat shading is “correct” when:

1) The surfaces should be flat, not approximating a
curved surface
2) Distance to light source high => N-L constant
3) Distance to camera high => V-R constant

and in particular

4) When the problem is not lighting, but something
else! (Rendering surface identifications)

‘% Information Coding / Computer Graphics, ISY, LiTH
'.,‘o‘%"

Gouraud shading

N

| Intensity calculated
N once per vertex
‘ /‘\\‘ — \ Each vertex has its own
surface normal

N

Interpolate
intensities!

o

.........

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shading

can simulate curved surfaces fairly well,
but many polygons may be needed, and edges
remain visible

Calculations in vertex shader - extremely fast!

lllllll

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

N Each vertex has its own
surface normal
Normal vectors are

\ interpolated

/'

llllllllll

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

can simulate curved surfaces very well, even
with low polygon counts

Calculate the light in the fragment shader

Computationally heavier

)
..........

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
% w‘j

Phong shading
- =
The Phong model

Phong Shading doesn’t necessarily use specular
reflections.

Phong Shading = normal-vector interpolation
shading

Information Coding / Computer Graphics, ISY, LiTH

Example:
Gouraud shader

- Transform normal vectors
- Calculate shading value per vertex, (here
using diffuse only), by dot product with light
direction
* Interpolate between vertices

L0

llll

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader - vertex shader

#version 150
in vec3 inPosition;
in vec3 inNormal;
out vec3 exColor;

volid main(void)
{
const vec3 light = vec3(0.58, 0.58, 0.58);
float shade;
shade = dot(normalize(inNormal), light);
shade = clamp(shade, 0, 1);
exColor = vec3(shade);
gl Position = vec4(inPosition, 1.0);

}

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader - fragment shader

#version 150
in vec3 exColor;
out vecd outColor;

void main(void)
{

outColor = vec4d (exColor,1.0);

}

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader
Note:

The variable “exColor” is interpolated between
vertices!

dot() och normalize() do what you expect.
inNormal is the normal vector in model
coordinates
(Should be transformed in a real program!)

The constant vector “light” is here hard coded

. COMNG

Ky o,
L \ -
e A,

‘q\ .

Information Coding / Computer Graphics, ISY, LiTH

Typical Gouraud shaded bunny

Information Coding / Computer Graphics, ISY, LiTH

Version 2: Add specular lighting to vertex shader

// Specular
vec3 reflectedLightDirection = reflect(-light, norm);
vec3 eyeDirection = vec3(normalize(-inPosition));

float specularStrength = 0.0;

specularStrength = dot(reflectedlLightDirection, eyeDirection);
float exponent = 8.0;

specularStrength = max(specularStrength, 0.01);
specularStrength = pow(specularStrength, exponent);

shade = (0.3*diffuseshade + 0.9*specularStrength);

(Again some transformations skipped.)

Information Coding / Computer Graphics, ISY, LiTH

o COMNNG
5
o
o -
. .
.
-~ J
‘%‘k: »

Specular Gouraud shaded bunny
A bit polygonal...

Information Coding / Computer Graphics, ISY, LiTH

Example:
Phong shader

Better shading!

* Interpolate normal vectors between vertices

- Calculate shading value per fragment

Practically the same operations, but the light
calculation are done in the fragment shader

lllllllll

Information Coding / Computer Graphics, ISY, LiTH

exNormal
surf
gl Position

Phong shader

Vertex shader

#version 150
vec3 1nPosition;
vec3 inNormal;
out vec3 exNormal;
out vec3 surf;
void main(void)

{

= inNormal;
inPosition; // For specular
vec4 (1inPosition, 1.0);

}

11111111111

*’d&: Information Coding / Computer Graphics, ISY, LiTH

Phong shader

Fragment shader

#version 150
out vec4d outColor;
in vec3 exNormal;
in vec3 surf;
void main(void)
{
const vec3 light = vec3(0.58, 0.58, 0.58);
float shade;
shade = dot(normalize(exNormal), light);
shade = clamp(shade, 0, 1);
outColor = vec4(shade, shade, shade, 1.0);

}

‘d Information Coding / Computer Graphics, ISY, LiTH

..and add specular part

// Specular
vec3 reflectedLightDirection = reflect(-1ightDirection, n);
vec3 eyeDirection = normalize(-surf);

float specularStrength = 0.0;
1f (dot(lightDirection, n) > 0.0)
{
specularStrength = dot(reflectedLightDirection, eyeDirection);
float exponent = 200.0;
specularStrength = max(specularStrength, 0.01);
specularStrength = pow(specularStrength, exponent);

h

outColor = vec4(diffuseStrength*@.5 + specularStrength*0.5);
¥

Information Coding / Computer Graphics, ISY, LiTH

\p'&"' - ‘Q%
s
L -
"" 4

Specular Phong shaded bunny

Now we’re talking!

o COMNG
%
=
N\ 0
o -
. .
.
- J
»

Information Coding / Computer Graphics, ISY, LiTH

Use the shading you need, balance
computing and quality

Gouraud Phong

. COMNG
G,

& %
".“ A

Information Coding / Computer Graphics, ISY, LiTH

Same for Stanford bunny

Gouraud Phong

