
Information Coding / Computer Graphics, ISY, LiTH

!
TSBK 07!

Computer Graphics!
Ingemar Ragnemalm, ISY

Information Coding / Computer Graphics, ISY, LiTH

Lecture 5!
3D graphics part 3!

!
Illumination!

!
Illumination applied: Shading!

!
Surface detail: Mappings!

Texture mapping!
...

Information Coding / Computer Graphics, ISY, LiTH

Illumination
We know where to put a polygon. Now, what should we fill it with? What pixel
value should we choose?!
!
Several factors to take into account. The most important ones:!
!
• Shading, illumination.!
• Texture mapping.!
!
Shading is determined according to an illumination model.

Information Coding / Computer Graphics, ISY, LiTH

Light source

Reflecting surface

Resulting light intensity

Light sources

Information Coding / Computer Graphics, ISY, LiTH

Light sources

Small sources can be modelled as point light source

Others can be modelled as distributed light sources

Information Coding / Computer Graphics, ISY, LiTH

Reflections

Diffuse reflection Specular reflection

Paper Plastic Metal Mirror

Information Coding / Computer Graphics, ISY, LiTH

3-component
illumination model

A common simple illumination model is
built from three components:!

!
Ambient light!

!
Diffuse reflections!

!
Specular reflections

Information Coding / Computer Graphics, ISY, LiTH

Ambient light

Same everywhere!!
!

Iamb = kd * Ia

Light emitted!
from surface

Diffuse!
reflectivity

Ambient light!
level of scene

Information Coding / Computer Graphics, ISY, LiTH

Diffuse reflections
Ideal diffuse reflector =!

Lambertian surface

Incoming light produces same
intensity in all directions!

Information Coding / Computer Graphics, ISY, LiTH

Lambert’s cosine law

Idiff = kd*Il*cos θ

Light emitted!
from surface

Diffuse reflectivity

Light level of!
light sourceθ

Information Coding / Computer Graphics, ISY, LiTH

Example: Diffuse sphere

kd = 1
Il = 0.9
Ia = 0.1

Information Coding / Computer Graphics, ISY, LiTH

cos θ = s·n

θs
n

Idiff = kd*Il*s•n

Dot product is nicer than angles!

Information Coding / Computer Graphics, ISY, LiTH

Specular reflections

Incoming light produces higher
intensity around the mirroring angle!

The width of the highlight
varies with surface types!

Information Coding / Computer Graphics, ISY, LiTH

The Phong model

θ θ φ

or!
!

Ispec = ks*Il*cosα φ

Ispec = W(θ)*Il*cosα φ

cos φ = r·v

r
v

s
n

Ispec = W(θ)*Il*cosα φ

Information Coding / Computer Graphics, ISY, LiTH

Calculation of R

Mirror s by n!

θ θ φs
n r

v

Information Coding / Computer Graphics, ISY, LiTH

Total contribution from one
light source

Ispec = ks*Il*(r·v)α
Idiff = kd*Il*s·n

Iamb = kd * Ia

Itotal = Iamb + Idiff + Ispec

θ θ φs
n r

v

Information Coding / Computer Graphics, ISY, LiTH

Clamping shading!
!

Note that the three-component light model
will produce negative light!!

!
This will cause problems in scenes with

several light sources!!
!
!
!
!
!
!

To avoid problems, clamp the resulting
value, e.g. max(0, light)

+ -

Information Coding / Computer Graphics, ISY, LiTH

Complete formula!
!
!
!
!
!
!
!
!

where ∑ sums over all light sources

I = kd * Ia + Idiff + ∑(kd*Il*max(0, s·n) + Ispec = ks*Il*max(0, r·v)α))

Information Coding / Computer Graphics, ISY, LiTH

Examples

kd = 0.45!
ks = 0.5!
Il = 1.0!
Ia = 0.1

Diffuse surface, kd = 0.9

Specular surface, n = 1

Specular surface, n = 5

Specular surface, n = 25

Specular surface, n = 125

Information Coding / Computer Graphics, ISY, LiTH

Examples

kd = 0.45!
ks = 0.5!
Il = 1.0!
Ia = 0.1

Specular surface, n = 5

Specular surface, n = 25

Specular surface, n = 125

Information Coding / Computer Graphics, ISY, LiTH

Alternative formulation!
Blinn-Phong

Halfway vector!
!

h = (s+v) / |s + v|!
!

Ispec = ks*Il*cosn α =!
!

= Ispec = ks*Il*(n · h)θ αs
n

v

h
θ+α

Information Coding / Computer Graphics, ISY, LiTH

Advanced illumination models!
!

Make ks a function of the viewing angle -
better modelling of glass and paper!

!
BRDF - highly general multi-dimensional

function

Information Coding / Computer Graphics, ISY, LiTH

Global illumination models!
!

Radiosity: Models light exchange recusively!
!

Ray-tracing, trace viewing rays.!
!

Photon mapping, “backwards ray-tracing”,
trace lighting rays.

Information Coding / Computer Graphics, ISY, LiTH

Polygon shading
Using the illumination!
models in high-speed!

polygon rendering

Information Coding / Computer Graphics, ISY, LiTH

Three ways to render!
a shaded polygon:

Flat shading!
Gouraud shading!
Phong shading

Information Coding / Computer Graphics, ISY, LiTH

Flat shading
Intensity calculated once and for all for the whole

polygon!
!

E.g. Ip = kd·N·L

Information Coding / Computer Graphics, ISY, LiTH

Flat shading is “correct” when:
1) The surfaces should be flat, not approximating a

curved surface!
2) Distance to light source high => N·L constant!

3) Distance to camera high => V·R constant!
!

and in particular!
!

4) When the problem is not lighting, but something
else! (Rendering surface identifications)

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shading

Intensity calculated
once per vertex!

Each vertex has its own
surface normalL

N

L
NL

N

Interpolate
intensities!

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shading

can simulate curved surfaces fairly well,!
but many polygons may be needed, and edges

remain visible!
!

Calculations in vertex shader - extremely fast!

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

Each vertex has its own
surface normal!

Normal vectors are
interpolatedL

N

NL

N

L

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

can simulate curved surfaces very well, even
with low polygon counts!

!
Calculate the light in the fragment shader!

!
Computationally heavier

Information Coding / Computer Graphics, ISY, LiTH

Phong shading!
≠!

The Phong model

Phong Shading doesn’t necessarily use specular
reflections.!

!
Phong Shading = normal-vector interpolation

shading

Information Coding / Computer Graphics, ISY, LiTH

Example:!
Gouraud shader!

!
• Transform normal vectors!

• Calculate shading value per vertex, (here
using diffuse only), by dot product with light

direction!
• Interpolate between vertices

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader - vertex shader!
!

#version 150 !
in vec3 inPosition;!
in vec3 inNormal;!
out vec3 exColor;!

!
void main(void) !

{ !
!const vec3 light = vec3(0.58, 0.58, 0.58); !

!float shade; !
!shade = dot(normalize(inNormal), light); !

!shade = clamp(shade, 0, 1);!
!exColor = vec3(shade); !

!gl_Position = vec4(inPosition, 1.0); !
}

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader - fragment shader!
!

#version 150 !
in vec3 exColor; !
out vec4 outColor; !
void main(void) !

{ !
!outColor = vec4(exColor,1.0); !

}

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shader!
Note:!
!

The variable “exColor” is interpolated between
vertices!!

!
dot() och normalize() do what you expect.!

!
inNormal is the normal vector in model

coordinates!
(Should be transformed in a real program!)!

!
The constant vector ”light” is here hard coded

Information Coding / Computer Graphics, ISY, LiTH

Typical Gouraud shaded bunny

Information Coding / Computer Graphics, ISY, LiTH

	// Specular	
	vec3 reflectedLightDirection = reflect(-light, norm);	
	vec3 eyeDirection = vec3(normalize(-inPosition));	
		
	float specularStrength = 0.0;	
	specularStrength = dot(reflectedLightDirection, eyeDirection);	
	float exponent = 8.0;	
	specularStrength = max(specularStrength, 0.01);	
	specularStrength = pow(specularStrength, exponent);	
		
	shade = (0.3*diffuseshade + 0.9*specularStrength);	
}

Version 2: Add specular lighting to vertex shader

(Again some transformations skipped.)

Information Coding / Computer Graphics, ISY, LiTH

Specular Gouraud shaded bunny!
A bit polygonal...

Information Coding / Computer Graphics, ISY, LiTH

Example:!
Phong shader!

!
Better shading!!

!
• Interpolate normal vectors between vertices!

• Calculate shading value per fragment!
!

Practically the same operations, but the light
calculation are done in the fragment shader

Information Coding / Computer Graphics, ISY, LiTH

Phong shader!
Vertex shader!

!
#version 150 !

in vec3 inPosition; !
in vec3 inNormal; !
out vec3 exNormal; !

out vec3 surf;!
void main(void) !

{ !
!exNormal = inNormal; !

!surf = inPosition; // For specular!
!gl_Position = vec4(inPosition, 1.0); !

}

Information Coding / Computer Graphics, ISY, LiTH

Phong shader!
Fragment shader!

!
#version 150 !

out vec4 outColor; !
in vec3 exNormal; !

in vec3 surf; !
void main(void) !

{ !
!const vec3 light = vec3(0.58, 0.58, 0.58); !

!float shade; !
!shade = dot(normalize(exNormal), light); !

!shade = clamp(shade, 0, 1);!
!outColor = vec4(shade, shade, shade, 1.0);!

}

Information Coding / Computer Graphics, ISY, LiTH

..and add specular part!
!

	// Specular	
	vec3 reflectedLightDirection = reflect(-lightDirection, n);	

	vec3 eyeDirection = normalize(-surf);	
		

	float specularStrength = 0.0;	
	if (dot(lightDirection, n) > 0.0)	

	{	
		specularStrength = dot(reflectedLightDirection, eyeDirection);	

		float exponent = 200.0;	
		specularStrength = max(specularStrength, 0.01);	

		specularStrength = pow(specularStrength, exponent);	
	}	
	

	outColor = vec4(diffuseStrength*0.5 + specularStrength*0.5);	
}

Information Coding / Computer Graphics, ISY, LiTH

Specular Phong shaded bunny!
Now we’re talking!

Information Coding / Computer Graphics, ISY, LiTH

Use the shading you need, balance
computing and quality

Gouraud Phong

Information Coding / Computer Graphics, ISY, LiTH

Same for Stanford bunny

Gouraud Phong

