\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Polygon rendering:
Scan conversion

Given a triangle, find the pixels to fill

18(119)

||||||

Information Coding / Computer Graphics, ISY, LiTH

d Xa, Ya

C XC! yC

Walk along edges
Fill spans of pixels

19(119)

"d’&: Information Coding / Computer Graphics, ISY, LiTH
. 4

.u”\t’

Pixel addressing and object
geometry

So far, | have been careless with
one question:

20(119)

o COMNG

Information Coding / Computer Graphics, ISY, LiTH

Where in the pixel (x,y)
is the point (x,y)?

®
®
@
Is it here, ...0r here, ...0r perhaps
top-left...? bottom-left...? here, centered?

This Is the “hotspot” of the pixel

21(119)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Which pixels are inside?

Without a proper definition, we will get errors,
visible “gaps” between polygons!

22(119)

||||||||||

Information Coding / Computer Graphics, ISY, LiTH

Sub-pixel precision rendering

If the pixel point, according to the pixel definition,
Is inside, it should be included

23(119)

1111111111

Information Coding / Computer Graphics, ISY, LiTH

Follow edges with differentials

dx1 = (Xpb-Xa) / (Yb - Ya)

C Xc Yo

dx2 = (Xc = Xa) / (Ve - Va)

24(119)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Sort vertices

Xa, Ya

First: Sort a, b, c to
top, middle, bottom

Xb; Yb
C XC! yC

25(119)

Information Coding / Computer Graphics, ISY, LiTH

Two parts

a Xa, Ya

C XCs yC

Separate to two
parts:

Top-to-middle and
middle-to-bottom

Recalculate dy; at b

26(119)

kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Sub-pixel precision rendering
O O O

O

v # roof(ya,) = trunc(y, +1)

X1 = Xq +dx1* (y - %)
X2 = Xq +dX2 * (y - o)

27(119)

g Information Coding / Computer Graphics, ISY, LiTH
<4

“
4,
L

Sub-pixel precision rendering

o o o
This is a point-in-corner definition!

For point-in-center, we must modify
the calculations by 0.5.
O O o o o

Y vy =roof(y.) = trunc(y, +1)
X1 =X, +dx1*(y-vVa)
X2 =Xz +dx2 * (Y - Va)

28(119)

||||||||||

Information Coding / Computer Graphics, ISY, LiTH

Filling an arbitrary polygon:

Scan-line polygon filling

29(119)

1111111111

Information Coding / Computer Graphics, ISY, LiTH

Scan-line polygon filling

\

Go from left to right,
fill when there is an odd number
of edges to the left!

30(119)

)
..........

*1:{‘: Information Coding / Computer Graphics, ISY, LiTH
% w‘}

Problem:
Scan-line through vertices

\

We get a count of two at each,
which causes incorrrect filling!

31(119)

1?} Information Coding / Computer Graphics, ISY, LiTH

“
Yy

Solutions:

1) Do specific checks for vertices, and detect
vertices where the two edges are on different
sides. Then the two edges count as one!

2) Pre-processing: For vertices with the edges
on different sides, shorten one with one scan-
line.

3) Use the pixel geometry definition! When
properly used, the problem disappears!

32(119)

‘1:,%: Information Coding / Computer Graphics, ISY, LiTH
44

"l
4,
%“; «

Inside-outside tests
Method 1: Odd-even rule

=7

To learn if a pixel is inside the polygon, you can
apply the same kind of test!

33(119)

‘d’ﬁi Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
i T

Inside-outside tests
Method 2: Non-zero winding rule

\\7

Check the directions of intersections!

34(119)

- g‘)l"k{_ a

=~
. .
'q .

Information Coding / Computer Graphics, ISY, LiTH

Flood fill

A color defines the area to be filled

35(119)

Information Coding / Computer Graphics, ISY, LiTH

Simple recursive algorithm:

procedure FloodFill(x,y,fill,target);

current := GetPixel(x,y);

If (current = target) then
SetPixel(x,y,fill);
FloodFill(x+1, y, fill, target);
FloodFill(x-1, v, fill, target);
FloodFill(x, y+1, fill, target);
FloodFill(x, y-1, fill, target);

procedure StartFloodFill(x, y, fill)
target ;= GetPixel(x, y);

if (fill < target) then

FloodFill(x, v, fill, target);

Not practical! Too
deep recursions!

36(119)

Information Coding / Computer Graphics, ISY, LiTH

Flood fill using pixel spans:

push starting pixel on stack
while stack not empty
pull top pixel off stack
for all fillable pixels A in the span
fill the pixel
for neighbor B above and below
if pixel fillable and A or B at start of span
push on stack

Efficient, low stack demand

37(119)

. COMNG

P ("t_.

. -

. %
Yo .

Information Coding / Computer Graphics, ISY, LiTH

Should we go through
this crack or not?

38(119)

. COMNG

~
. -
'q .

Information Coding / Computer Graphics, ISY, LiTH

Better flood fill #1:
flood fill color interval

Fills same or similar colors

39(119)

\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Better flood fill #2:
calculate mask

Can fill into another image buffer!

40(119)

Information Coding / Computer Graphics, ISY, LiTH

B Better flood fill #3: soft fill

Anti-aliasing effect at edges!

41(119)

1?} Information Coding / Computer Graphics, ISY, LiTH

“
.....

Conclusions about low-level algorithms

Not the most common ones to implement - but
more common than you may think

Methods often applicable for other problems

Some 2D methods (like the inside-outside test)
interesting in 3D generalizations

42(119)

