

Self-squaring fractals

Based on simple functions in complex space

Insert complex numbers (points) into a function

Apply function recursively, and analyze the behaviour.

- Diverge?
- Converge?
 - Chaotic?

Converge or chaotic: Does it keep within some limit in a number of iterations?

Information Coding / Computer Graphics, ISY, LiTH

Self-squaring fractals

The Julia set

 $\mathbf{Z}_{k+1} = \mathbf{Z}_{k}^{2} + \lambda$

Julia set for $\lambda = (0, 1) = 0 + j$

The Julia set - Implementation

for y = miny to maxy for x = minx to maxx (zr, zi) = scaling of (x,y)

for i = 0 to maxiterations $z = z^2 + \lambda$ if Izl > R then Leave

Draw pixel (x,y) (different colors for different i)

maxiterations ≈ 15 $\mathbf{R}^2 \approx \mathbf{10}$

Information Coding / Computer Graphics, ISY, LiTH

Other Julia sets

 $\mathbf{Z}_{\mathbf{k}+1} = \mathbf{Z}_{\mathbf{k}}^2 + \lambda$

Other λ values

 $\lambda = (-1.3, 0)$

 $\lambda = (0.3, 0.5)$

Information Coding / Computer Graphics, ISY, LiTH

Self-squaring fractals The Mandelbrot set

 $Z_{k+1} = Z_k^2 + Z_0$

Self-squaring fractals

Beautiful Non-predictable Limited usability

Mathematical curiosity

Fractals, summary

1) Geometrically constructed fractals

Very useful for generating many kinds of natural objects

Allows design of complex models with arbitrary resolution

2) Self-squaring fractals (and other adventures in the complex plane)

Questionable practical usability

Hard to do planned designing