
Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation!
!

Statisticaly self-similar fractal!
!

but also!
!

Application of noise functions

34(66)

34(66)

Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation!
!

• Midpoint displacement/heightfield
refinement!

!
• Frequency space filtered noise!

!
• Band-limited noise functions (Perlin noise)

35(66)35(66)

Information Coding / Computer Graphics, ISY, LiTH

Random midpoint-displacement!
!

Good for fractal terrain generation

Initiator!
!

Desired rough
overall whape

Generator!
!

Find midpoint,
displace along y

only

7
iterations

36(66)36(66)

Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation in 3D!
!

Split a square to four!
!

Displace midpoints of each side and middle

Middle point can be independent or calculated from
the others!

!
Edge points must match neighbor patches

37(66)37(66)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

1) Midpoint from corners!
!

2) Edge from coners and midpoints

Repeat to
desired

resolution

38(66)38(66)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

Random offset at each stage!
!

Proportional to size of the side of the square!
!

=> Scale down by sqrt(2) for each phase!!
!

(Not by 2 for every two phases! Popular
misconception!)

39(66)39(66)

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm filtering!
!

Important feature! We are reconstructing a signal
from samples! (And then add HF detail.)!

!
Simple and fast: Averaging (linear interpolation)!

!
Better: Higher precision filter from larger

neighborhood. Usual signal processing rules
apply! Use a 4x4 neighborhood.

Linear

Better, e.g. cubic spline

40(66)40(66)

Information Coding / Computer Graphics, ISY, LiTH

”Heightfield approach”!
!

”Square-square” algorithm!
!

Terrain level k is array of resolution 2k x 2k!
!

The next level has 4x the resolution!
!

Generate new 2x2 block from one, or filter over a small
neighborhood!

!
Add random offset to all values!

!
Offset should be smaller for higher k!

!
=> magnitude of frequency components inverse proportional to

frequency!

41(66)41(66)

Information Coding / Computer Graphics, ISY, LiTH

Square square!
!

Image upsampling + add noise

Again: Linear
interpolation is
simple and fast,

better filter
gives better

result

42(66)42(66)

Information Coding / Computer Graphics, ISY, LiTH

Noise functions!
!

Fractals and noise functions are closely
related!

!
Noise can look natural... but when?!

!
• white noise!

• colored noise!
• value noise!

• gradient noise

43(66)43(66)

Information Coding / Computer Graphics, ISY, LiTH

White noise!
!

Same amplitude in all frequencies!
!

Useless as it is, but can be processed to
something better.

44(66)44(66)

Information Coding / Computer Graphics, ISY, LiTH

Colored noise!
!

Amplitude varies with frequencies!
!

With the right variation, it can look nice - natural!

45(66)45(66)

Information Coding / Computer Graphics, ISY, LiTH

Colored noise!
!

Can be processed with filters, e.g. frequency plane
functions!

!
Considered too computationally heavy. (Questionable!)!

!
Therefore other methods became popular: Simplex

noise, Perlin noise.

46(66)46(66)

Information Coding / Computer Graphics, ISY, LiTH

Value noise!
!

If you just fill your pixels with values in some range, you
get value noise (essentially white noise).!

!
Value noise is perfectly useful after proper filtering,

possibly combining several frequency bands.

47(66)47(66)

Information Coding / Computer Graphics, ISY, LiTH

Colored noise by filtering in the
frequency plane!

!
Fill frequency space (2D) with random

numbers (white noise)!
!

Filter by G(f) = F(f) * 1/|f|!
!

Convert to spatial image with FFT

48(66)48(66)

Information Coding / Computer Graphics, ISY, LiTH

Filter white noise by 1/f!
!

Examples

Frequency space:

49(66)49(66)

Information Coding / Computer Graphics, ISY, LiTH

Other falloffs than 1/|f|

Frequency space:

Signal space:

1/|f|2 1/sqrt(|f|)

50(66)50(66)

Information Coding / Computer Graphics, ISY, LiTH

Gradient noise!
!

If the values are used for gradients instead of
height, we get gradient noise. (Perlin noise.)!

!
The function is interpolated to match the

gradients.

51(66)51(66)

Information Coding / Computer Graphics, ISY, LiTH

Simplex noise!
!

Gradient noise based on triangles/tetrahedrons.
Ken Perlin’s replacement for ”Perlin

noise” (gradient noise on quads).

52(66)52(66)

Information Coding / Computer Graphics, ISY, LiTH

Gradient noise vs FFT!
!

Gradient noise claimed to be very fast. (Compared to
what?)!

!
Frequency space processing much simpler algorithm
(simple weighting curve, based on 1/f, FFT) and great

control, but requires O(NlogN) operations.!
!

One pass Gradient noise faster... but don’t we need many?

53(66)53(66)

Information Coding / Computer Graphics, ISY, LiTH

Artifacts!
!

Diamond square and Perlin noise are incomplete! They both "lock"
in certain points, only producing certain phases of the signal.!

!
I.e. produce only the cosine part of a signal and skipping the sin!!

!
This can be corrected by generating two sets of the signal, with a

proper offset!

54(66)54(66)

Information Coding / Computer Graphics, ISY, LiTH

Applications of noise functions and randomness!
!

Terrains!
!

Textures, texture detail!
!

Water!
!

Smoke!
!

Animations (particle systems etc)!
!

Etc...!
!

I told you noise is beautiful!

55(66)55(66)

Information Coding / Computer Graphics, ISY, LiTH

Feature comparison!
!

Scalability: Diamond square and Square square very easy
to scale!

!
Perlin easy to scale if you add additional octaves - which

degrades performance!
!

Control: Frequency plane filtering has extreme control. The
others depend on weights on octaves!

!
!

Your application needs may decide

56(66)56(66)

Information Coding / Computer Graphics, ISY, LiTH

Performance comparison!
!

Produce an NxN image!
!

Diamond square: O(N2)!
!

Square square: O(N2)!
!

Single octave Perlin: O(N2)!
!

Multi octave Perlin: O(N2logN)!
!

Frequency plane filtered: O(N2logN)!
!
!

All produce similar results except single octave Perlin.!
!

BUT: Square square and FP filter gives highest quality!

57(66)57(66)

Information Coding / Computer Graphics, ISY, LiTH

And then...?!
!

• Add water, calculate rivers and lakes!
!

• Erosion effects (esp along rivers)!
!

• Roads!
!

• Vegetation and buildings!
!

• Expand into new patches!
!

• Multitexturing for different kinds of locations (slopes, height)!
!

• Different generation for different climates (mountains,
deserts...?)

58(66)58(66)

Information Coding / Computer Graphics, ISY, LiTH

Conclusions of terrain generation!
!

The backbone of procedural environment generation!!
!

Fractal or noise? Same thing!!
!

Higher frequencies - lower amplitudes. (Typical for natural images
as well as a rule in fractals.)!

!
Don't assume Perlin noise is best just because it is famous.

Proper (traditional) signal processing methods will compete very
favorably - if you filter properly!

59(66)59(66)

