kkkkkkk

Information Coding / Computer Graphics, ISY, LiTH

Animation

Essentially a question of flipping between
many still images, fast enough

. — _
EARLY)
K...JU&s @
| N\“N\N“ON KEEP LCOKING 3
| TR DGAXT
; BUERND AND Z’é
:
| g
®
| :
. ; X

I WOLET @0y - SoCatOR. LN > WUSNVe by 16

_ Non Seqguitur by Wiley Miller Thursday, January 15, 2004

lj Information Coding / Computer Graphics, ISY, LiTH
%, v“}

Animation as a topic

 Page flipping, double-buffering
- Sprite animation

* Movement and posing

» Collision detection and handling

 Deformations

- COIMNg, =
Koy b
B 2
e -
~——
. -
al'
4
™ o

Information Coding / Computer Graphics, ISY, LiTH

Double buffering

Flicker-free animation

||||||

Information Coding / Computer Graphics, ISY, LiTH

The double buffering problem

When animating a scene with many objects in real time, it is not
just a question of showing images:

- Erase the entire scene
- Draw each visible object in new positions

This procedure may be visible if done on-screen!

..........

"{fﬁ Information Coding / Computer Graphics, ISY, LiTH
% V‘}

Single buffered animation

Flicker

Screen update
beam

If the beam passes over an area while it is erased,
flicker will occur.

d Information Coding / Computer Graphics, ISY, LiTH
5

“
4,
g .

Solutions

1) Don’t erase-and-redraw near the update beam

Unreliable.
Doesn’t work on all screens.

2) Double buffering.

Needs more memory. Otherwise easy to do and
reliable.

Information Coding / Computer Graphics, ISY, LiTH

Double buffering

VRAM VRAM VRAM
Buffer 1 |Buffer 2 Buffer1 | «<——— | Buffer 2
Copy
Choose buffer leed output image buffer
Animation with double Animation with a single

output buffers output buffer

d Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
L

Double buffered animation

Tearing

~—> Screen

update
beam

Occurs if buffers switch while the screen is being redrawn.

Synch with vsync to avoid.

g Information Coding / Computer Graphics, ISY, LiTH
=

Built-in VBL sync (vsync)

Modern systems have VBL sync built-in -
even mandatory double buffering. You
may need to turn “vsync” off to test
maximum frame rate.

Information Coding / Computer Graphics, ISY, LiTH

Double buffering in OpenGL
Double buffer

- Pass GLUT_DOUBLE to glutinitDisplayMode
- glutSwapBuffers();

Repeated redraw

» glutRepeatingTimer() or timer callback with
glutPostRedisplay()
- Update position variables

\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Sprite animation

2D animation based on 2D images.

Extremely common in games! (Often indie
games and/or mobile games.)

Information Coding / Computer Graphics, ISY, LiTH

Sprites in OpenGL

Use textured polygons with
transparency! (Like billboards but
without 3D.)

Special “blitter” calls existed in GL2, but
they were not guaranteed to be fast!

11111111111

*;d&: Information Coding / Computer Graphics, ISY, LiTH

Pseudo-3D effects

Scaled sprites on background with perspective:
Depth cue by size

Side-scrolling with parallax scroll:

Depth cue by movement

Depth due by shadows

Distance between object and shadow gives important information

- i l"h{_ a

s
'q v

Information Coding / Computer Graphics, ISY, LiTH

-
-

Depth from shadows
S
-

=
®®®

||||||

Information Coding / Computer Graphics, ISY, LiTH

Depth from size

=
s

-

<

-

Information Coding / Computer Graphics, ISY, LiTH

Pseudo-3D effects vs 3D

* Depth from size = perspective projection

- Parallax scroll: Comes for free to some extent,
but can be emphasized with cameras observing
the viewer

* Depth from shadows: That is why shadows are

important in 3D! It is needed for “full 3D”
experience.

..........

‘]j%: Information Coding / Computer Graphics, ISY, LiTH
=

Animation techniques for moving
objects

* Procedural animation
* Physics-based animation

* Pre-programmed animation paths

)
..........

"g’*‘: Information Coding / Computer Graphics, ISY, LiTH
% v/

Animation paths

Use Catmull-Rom splines! Predictable,
smooth, continuous!

.........

"d’*‘l Information Coding / Computer Graphics, ISY, LiTH
4

Character animation

* Pre-defined poses

- Key-frame animation

- Forward kinematics /’\

* Inverse kinematics
* Physics based animation

- Motion capture

lllllllll

Information Coding / Computer Graphics, ISY, LiTH

Key-frame animation

Pre-rendered animations
Key-frames are designed at suitable intervals
Frames between keyframes are interpolated (morphed)

Very common method for real-time animation

NEINKIN

Information Coding / Computer Graphics, ISY, LiTH

Kinematics

Kinematics = movement without forces

Forward kinematics:

Specify poses by specifying rotation of joints. Easy to
implement, but specifying poses is much trial-and-
error.

Inverse kinematics:

Goal-driven posing. Specify where some part should
go (i.e. a hand) and calculate necessary rotations

.........

Information Coding / Computer Graphics, ISY, LiTH

Motion capture

Extremely common in movies!

* Record by natural visuals only
- Tracking markers

» Active sensors on the body

Perfect for pre-generated animations.

..........

‘]j’*‘: Information Coding / Computer Graphics, ISY, LiTH
=

Face animation

Hard problem - we are very sensitive to errors!

Animate by action units (muscle based) or face animation
parameters (extreme detail)

FAPs part of the MPEG-4 standard.

The Candide model

Jj Information Coding / Computer Graphics, ISY, LiTH
44

“
4,
L

Some advanced animation topics

* Bones and skinning systems
* Deformations

- Physics-based animation

* Quaternions, SLERP

Mainly subjects for later courses

11111111111

13 “'d*‘l Information Coding / Computer Graphics, ISY, LiTH
o 2

Particle systems

Spectacular effects with little effort!
Many small moving objects.

- Explosions
- Water

* Fire

- Show

« Rain

‘$ Information Coding / Computer Graphics, ISY, LiTH
?"%\cv'

Particle system

Example: Water

No randomness - bad

LLLLLLL

Information Coding / Computer Graphics, ISY, LiTH

Particle system

Example: Water

Information Coding / Computer Graphics, ISY, LiTH

Particle system

* Initial position
- Initial speed (usually with some
randomness))

- Movement (usually independent, physically

realistic)

- Termination rule (e.g. hits ground, fades
away after some time...)

jj Information Coding / Computer Graphics, ISY, LiTH
=

Particle system

Movement according to fundamental
physics:

acceleration = gravity + forces/mass
speed = speed + acceleration
position = position + speed

“Euler integration”

g Information Coding / Computer Graphics, ISY, LiTH
5

“
4,
%\,. .

Particle system on GPU

CPU-driven particle systems OK up to a
certain size

Data transfer (new positions) of all particles
can be a bottleneck

Can the whole particle system be computed
on the GPU?

o COUMNG =
‘\." (.4’

< -

~ -“
. - -
. -

”'

. \l‘f
e o

Information Coding / Computer Graphics, ISY, LiTH

Texture based particle systems
Use textures to store Xx, y, z, dx, dy, dz
Store as color components (r, g, b)

Needs advanced texturing features (render
to texture, floating-point buffers)

Particles as billboards. Each polygon must
identify its particle data.

Information Coding / Computer Graphics, ISY, LiTH

Separate compute kernels for
particle systems

CUDA, OpenCL, Compute shaders
Free choice of data formats

Less integration with the OpenGL pipeline

Information Coding / Computer Graphics, ISY, LiTH

Drawing particle systems

Large number of very simple models
(billboards)!

Modest demands on GPU, but very large
number of function calls!

Solution: Instancing

l?f Information Coding / Computer Graphics, ISY, LiTH

Instancing
Draw a large number of the same model!
Each instance has an index, the instance number.
glDrawArraysinstanced(GL_TRIANGLES, 0, 3, 10);
draws a triangle 10 times!

gl_InstancelD tells the shader which instance we
have. Use for affecting position.

Information Coding / Computer Graphics, ISY, LiTH

Billboard instancing demo

:- ® O O (GL3 billboard instancing example +-,. POSition tr|V|a”y affeCted

One single call to by gl_Instance ID

glDrawArraysinstanced

#version 150

in vec3 in_Position;
uniform mat4 myMatrix;
uniform float angle;
uniform float slope;

out vec?2 texCoord;

void main(void)

{

mat4 r;

float a = angle + gl_InstancelD * 0.5;

float rr = 1.0 - slope * gl_InstancelD * 0.01;
r[O] = rr*vec4(cos(a), -sin(a), 0, 0);

r[1] = rr*vec4(sin(a), cos(a), 0, 0);

r[2] = vec4(0, O, 1, 0);

r[3] = vec4(0, 0, 0, 1);

texCoord.s = in_Position.x+0.5;

texCoord.t = in_Position.y+0.5;

gl_Position = r * myMatrix * vec4(in_Position,
1.0);

}

Information Coding / Computer Graphics, ISY, LiTH

Instancing complex models

Less significant; A more complex model puts enough
load on the system to hide the impact of instancing.

®@00 _ Gl3instanced bﬁr_ny_ex;mple

d Information Coding / Computer Graphics, ISY, LiTH
'."% v‘j

Basic: Start on CPU
Advanced: Go for GPU acceleration

Performance is important, but GPU based
particle systems are beyond basic course
goals.

