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Animation

Essentially a question of flipping between
many still images, fast enough
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Animation as a topic

 Page flipping, double-buffering
- Sprite animation

* Movement and posing

» Collision detection and handling

 Deformations
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Double buffering

Flicker-free animation
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The double buffering problem

When animating a scene with many objects in real time, it is not
just a question of showing images:

- Erase the entire scene
- Draw each visible object in new positions

This procedure may be visible if done on-screen!
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Single buffered animation

Flicker

Screen update
beam

If the beam passes over an area while it is erased,
flicker will occur.
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Solutions

1) Don’t erase-and-redraw near the update beam

Unreliable.
Doesn’t work on all screens.

2) Double buffering.

Needs more memory. Otherwise easy to do and
reliable.
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Double buffering

VRAM VRAM VRAM
Buffer 1 |Buffer 2 Buffer1 | «<——— | Buffer 2
Copy
Choose buffer leed output image buffer
Animation with double Animation with a single

output buffers output buffer
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Double buffered animation

Tearing

~—> Screen

update
beam

Occurs if buffers switch while the screen is being redrawn.

Synch with vsync to avoid.
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Built-in VBL sync (vsync)

Modern systems have VBL sync built-in -
even mandatory double buffering. You
may need to turn “vsync” off to test
maximum frame rate.
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Double buffering in OpenGL
Double buffer

- Pass GLUT_DOUBLE to glutinitDisplayMode
- glutSwapBuffers();

Repeated redraw

» glutRepeatingTimer() or timer callback with
glutPostRedisplay()
- Update position variables
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Sprite animation

2D animation based on 2D images.

Extremely common in games! (Often indie
games and/or mobile games.)
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Sprites in OpenGL

Use textured polygons with
transparency! (Like billboards but
without 3D.)

Special “blitter” calls existed in GL2, but
they were not guaranteed to be fast!
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Pseudo-3D effects

Scaled sprites on background with perspective:
Depth cue by size

Side-scrolling with parallax scroll:

Depth cue by movement

Depth due by shadows

Distance between object and shadow gives important information




- i l"h{_ a

s
'q v

Information Coding / Computer Graphics, ISY, LiTH

-
-

Depth from shadows
S
-

=
®®®




||||||

Information Coding / Computer Graphics, ISY, LiTH

Depth from size
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Pseudo-3D effects vs 3D

* Depth from size = perspective projection

- Parallax scroll: Comes for free to some extent,
but can be emphasized with cameras observing
the viewer

* Depth from shadows: That is why shadows are

important in 3D! It is needed for “full 3D”
experience.
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Animation techniques for moving
objects

* Procedural animation
* Physics-based animation

* Pre-programmed animation paths
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Animation paths

Use Catmull-Rom splines! Predictable,
smooth, continuous!
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Character animation

* Pre-defined poses

- Key-frame animation

- Forward kinematics /’\

* Inverse kinematics
* Physics based animation

- Motion capture
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Key-frame animation

Pre-rendered animations
Key-frames are designed at suitable intervals
Frames between keyframes are interpolated (morphed)

Very common method for real-time animation

NEINKIN
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Kinematics

Kinematics = movement without forces

Forward kinematics:

Specify poses by specifying rotation of joints. Easy to
implement, but specifying poses is much trial-and-
error.

Inverse kinematics:

Goal-driven posing. Specify where some part should
go (i.e. a hand) and calculate necessary rotations
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Motion capture

Extremely common in movies!

* Record by natural visuals only
- Tracking markers

» Active sensors on the body

Perfect for pre-generated animations.
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Face animation

Hard problem - we are very sensitive to errors!

Animate by action units (muscle based) or face animation
parameters (extreme detail)

FAPs part of the MPEG-4 standard.

The Candide model
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Some advanced animation topics

* Bones and skinning systems
* Deformations

- Physics-based animation

* Quaternions, SLERP

Mainly subjects for later courses
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Particle systems

Spectacular effects with little effort!
Many small moving objects.

- Explosions
- Water

* Fire

- Show

« Rain
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Particle system

Example: Water

No randomness - bad
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Particle system

Example: Water
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Particle system

* Initial position
- Initial speed (usually with some
randomness))

- Movement (usually independent, physically

realistic)

- Termination rule (e.g. hits ground, fades
away after some time...)
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Particle system

Movement according to fundamental
physics:

acceleration = gravity + forces/mass
speed = speed + acceleration
position = position + speed

“Euler integration”
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Particle system on GPU

CPU-driven particle systems OK up to a
certain size

Data transfer (new positions) of all particles
can be a bottleneck

Can the whole particle system be computed
on the GPU?
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Texture based particle systems
Use textures to store Xx, y, z, dx, dy, dz
Store as color components (r, g, b)

Needs advanced texturing features (render
to texture, floating-point buffers)

Particles as billboards. Each polygon must
identify its particle data.
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Separate compute kernels for
particle systems

CUDA, OpenCL, Compute shaders
Free choice of data formats

Less integration with the OpenGL pipeline
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Drawing particle systems

Large number of very simple models
(billboards)!

Modest demands on GPU, but very large
number of function calls!

Solution: Instancing
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Instancing
Draw a large number of the same model!
Each instance has an index, the instance number.
glDrawArraysinstanced(GL_TRIANGLES, 0, 3, 10);
draws a triangle 10 times!

gl_InstancelD tells the shader which instance we
have. Use for affecting position.
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Billboard instancing demo

:- ® O O (GL3 billboard instancing example +-,. POSition tr|V|a”y affeCted

One single call to by gl_Instance ID

glDrawArraysinstanced

#version 150

in vec3 in_Position;
uniform mat4 myMatrix;
uniform float angle;
uniform float slope;

out vec?2 texCoord;

void main(void)

{

mat4 r;

float a = angle + gl_InstancelD * 0.5;

float rr = 1.0 - slope * gl_InstancelD * 0.01;
r[O] = rr*vec4(cos(a), -sin(a), 0, 0);

r[1] = rr*vec4(sin(a), cos(a), 0, 0);

r[2] = vec4(0, O, 1, 0);

r[3] = vec4(0, 0, 0, 1);

texCoord.s = in_Position.x+0.5;

texCoord.t = in_Position.y+0.5;

gl_Position = r * myMatrix * vec4(in_Position,
1.0);

}
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Instancing complex models

Less significant; A more complex model puts enough
load on the system to hide the impact of instancing.

®@00 _ Gl3instanced bﬁr\_ny_ex;mple
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Basic: Start on CPU
Advanced: Go for GPU acceleration

Performance is important, but GPU based
particle systems are beyond basic course
goals.




