

Originally a drafting tool to create a smooth curve

In compute graphics: a curve built from sections, each described by 3rd degree polynomial.

Very common in non-real-time graphics, both 2D and 3D!

Useful also for real-time.

Applications of splines

- Designing smooth curves (common in 2D) illustrations)
 - Modelling smooth surfaces
 - Representating of smooth surfaces (converted to polygons in real-time)
 - Animation paths

Important application of splines: Text rendering!

We will return to that subject on a later lecture.

Information Coding / Computer Graphics, ISY, LiTH

Control points

A spline is specified by a set of control points.

Parametric representation

$$\begin{aligned} \mathbf{x} &= \mathbf{x}(\mathbf{u}) \\ \mathbf{y} &= \mathbf{y}(\mathbf{u}) \\ \mathbf{z} &= \mathbf{z}(\mathbf{u}) \end{aligned} \qquad \mathbf{u}_1 \leq \mathbf{u} \leq \mathbf{u}_2 \end{aligned}$$

A set of functions for each coordinate

Specification of splines by functions

 $x_1(u) = a_{x1}u^3 + b_{x1}u^2 + c_{x1}u + d_{x1}u^3$

$$y_1(u) = a_{y1}u^3 + b_{y1}u^2 + c_y$$

 $z_1(u) = a_{z1}u^3 + b_{z1}u^2 + c_{z1}u + d_{z1}$

 $x_2(u) = a_{x2}u^3 + b_{x2}u^2 + c_{x2}u + d_{x2}$ $y_2(u) = a_{y_2}u^3 + b_{y_2}u^2 + c_{y_2}u + d_{y_2}u^2$ $z_2(u) = a_{z_2}u^3 + b_{z_2}u^2 + c_{z_2}u + d_{z_2}u^2$

- $_{1}u + d_{v1}$

Geometric continuity

Essentially one less constraint

Information Coding / Computer Graphics, ISY, LiTH

Blending functions

Rewrite parametric form to a set of polynomials, one polynomial for each control point

Approximation splines

Use a set of blending functions to blend together control points to points on the curve

Bézier curves B-splines NURBS

Common demand on approximations splines:

Stay within the convex hull of the control points!

Convex hull = minimal convex polygon enclosing a specified set of points