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Introduction / Motivation

» NVIDIA: every GPU architecture we develop will be
mobile-first

» PCs (incl. laptops) sales declining, smartphones/tablets
fast rising
» Will smartphones/tablets replace PCs?

» Driving factors: cheaper, smaller, longer runtime
» due to different architecture (so called System-on-a-Chip (SOC))

1/14
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Introduction / Motivation

PC SOC
» Distributed memory and » Shared memory, small caches
caches (if at all)
» Several broad, often » One central bus, limited size

star-organized busses

» Optimized for Performance » Optimized for Efficiency
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Introduction / Motivation

K1
Performance Memory Bandwidth
(GFLOPS) (GB/s)
K1 365 17
GeForce GTX 780 Tl 5000 336
Speedup (Graphics card) x13.7 x19.8
Compares to 7 years old 12 years old

graphic-card
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Best Practice

Procedural methods often better than precomputed

Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

Don’t use double, reduce precision or use
fix-point if possible

Use ifs only to avoid memory accesses or heavy
computations
» Might however be less useful when core count increases
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shader as well as loops based on variables
» Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

» Use texture compression, it’s (mostly) free!

typically: 1:6 compression, 30 dB

supported in hardware

different standards, best bet: DXT

caution however if using textures for other things than images
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Best Practice

» Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables
» Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

» Use texture compression, it’s (mostly) free!

typically: 1:6 compression, 30 dB

supported in hardware

different standards, best bet: DXT

caution however if using textures for other things than images

v

vV vy

» Biggest bottlenecks: overdraw, texture accesses

6/14



nnnnnnnnnnnnnnnn

OpenGL ES Versions

» 1.x: Fixed Pipeline
» not compatible to 2.0/3.0

7/14



.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

OpenGL ES Versions

» 1.x: Fixed Pipeline
» not compatible to 2.0/3.0

» 2.0: Streamlined OpenGL
» Removed obscure methods

» Optimize existing methods for low pow performance hardware
» Introduce new specialized methods and data structures

7/14



.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

> 1.x:

>

» 2.0:

OpenGL ES Versions

Fixed Pipeline
not compatible to 2.0/3.0

Streamlined OpenGL

» Removed obscure methods
» Optimize existing methods for low pow performance hardware
» Introduce new specialized methods and data structures

: “Simple” Extension to 2.0

» more flexible than 2.0
» fully compatible

7/14
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Differences

» Only 2 shaders

» Vertex & Fragment
» No Tesselation or Geometry Shaders

» Removed memory-intensive operations and data structures

> Limited Anti-Aliasing

> 2.0: Textures: only byte data types, only 2D
3.0: also float data types, also 3D textures

» Good support for texture compression
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Differences

» Memory Access

» Vertex buffer: standard in 3.0, optional in 2.0
(available in older iOS)
» Same memory: can pass pointers from CPU to GPU

» Need to declare precision for shader variables

> Select lesser precision for better performance

» Recommendation: high precision in vertex shader,
medium in fragment shader

» Caution: if the same uniform variable is used in
both vertex and fragment shader it has to have
the same precision in both
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Differences
OpenGL 3.0 OpenGL ES

precision mediump float;
uniform sampler2D tex; uniform sampler2D tex;
in vec2 coord; varying vec2 coord;

out vec4d outColor;
void main (void) void main(void)
{ {

outColor=texture (tex, coord) ; gl FragColor=texture2D(tex,coord);

} }
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Which version to use?

» 1.x: Too old, limited

» 2.0: Best bet, should offer enough flexibility for
most purposes

» 3.0: Still too new?
» Android: since 4.3

» iOS: since 7 (older phones and pads might not support it)
» Blackberry: since 10.2

11/14
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Future version(s)

» OpenGL ES completely a subset of OpenGL

» Even more so than today

Cross-platform development

High-end SOCs: can use normal OpenGL, but low-end not!
also: OpenGL ES might be faster

vV vy

» Tesselation ?

12/14
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Market overview

» ARM

» THE SOC CPU

> Licensing rather than selling

» GPU core: Mali
Only middle-class performance
Cheap? Good for high resolution?

» Imagination Technologies: PowerVR

» Traditionally best architecture
» GPU used in the Dreamcast
» Also licensing core, not selling chips
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Market overview

» Qualcomm: Snapdragon

» Chip manufacturer
» ARM CPUs, Own GPU: Adreno (former ATI)
» Currently fastest (due to fast memory access?)

» NVIDIA: Tegra
» Chip including ARM CPUs and own GPU
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Conclusion

» Smartphones/Tablets: big and still fast growing market
> Directly linked to SOC architecture

=> unlikely to change
» Memory Access: expensive, performance-/memory-gap will

only get worse

» OpenGL ES: streamlined OpenGL designed for these
systems

» Biggest challenge: minimize memory footprint

» But be aware: you can break the rules...
> ...just as long as you know what you are doing
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Questions?




Thank you very much!

www.icg.isy.liu.se



