
OpenGL ES

Jens Ogniewski
Information Coding Group

Linköping University



I Introduction / Motivation

I Good Practice

I OpenGL ES - Differences



Introduction / Motivation

I NVIDIA: every GPU architecture we develop will be
mobile-first

1/14



Introduction / Motivation

I NVIDIA: every GPU architecture we develop will be
mobile-first

I PCs (incl. laptops) sales declining, smartphones/tablets
fast rising

I Will smartphones/tablets replace PCs?

1/14



Introduction / Motivation

I NVIDIA: every GPU architecture we develop will be
mobile-first

I PCs (incl. laptops) sales declining, smartphones/tablets
fast rising

I Will smartphones/tablets replace PCs?

I Driving factors: cheaper, smaller, longer runtime
I due to different architecture (so called System-on-a-Chip (SOC))

1/14



Introduction / Motivation

PC SOC

2/14



Introduction / Motivation

PC SOC

I Distributed memory and
caches

I Shared memory, small caches
(if at all)

3/14



Introduction / Motivation

PC SOC

I Distributed memory and
caches

I Several broad, often
star-organized busses

I Shared memory, small caches
(if at all)

I One central bus, limited size

3/14



Introduction / Motivation

PC SOC

I Distributed memory and
caches

I Several broad, often
star-organized busses

I Optimized for Performance

I Shared memory, small caches
(if at all)

I One central bus, limited size

I Optimized for Efficiency

3/14



Introduction / Motivation

K1

4/14



Introduction / Motivation

K1

Performance Memory Bandwidth

(GFLOPS) (GB/s)

K1 365 17

4/14



Introduction / Motivation

K1

Performance Memory Bandwidth

(GFLOPS) (GB/s)

K1 365 17

GeForce GTX 780 TI 5000 336

4/14



Introduction / Motivation

K1

Performance Memory Bandwidth

(GFLOPS) (GB/s)

K1 365 17

GeForce GTX 780 TI 5000 336

Speedup (Graphics card) x13.7 x19.8

4/14



Introduction / Motivation

K1

Performance Memory Bandwidth

(GFLOPS) (GB/s)

K1 365 17

GeForce GTX 780 TI 5000 336

Speedup (Graphics card) x13.7 x19.8

Compares to 7 years old 12 years old

graphic-card

4/14



Best Practice

I Procedural methods often better than precomputed

5/14



Best Practice

I Procedural methods often better than precomputed

I Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

5/14



Best Practice

I Procedural methods often better than precomputed

I Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

I Don’t use double, reduce precision or use
fix-point if possible

5/14



Best Practice

I Procedural methods often better than precomputed

I Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

I Don’t use double, reduce precision or use
fix-point if possible

I Use ifs only to avoid memory accesses or heavy
computations

I Might however be less useful when core count increases

5/14



Best Practice

I Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables

I Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

6/14



Best Practice

I Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables

I Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

I Use texture compression, it’s (mostly) free!
I typically: 1:6 compression, 30 dB
I supported in hardware
I different standards, best bet: DXT
I caution however if using textures for other things than images

6/14



Best Practice

I Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables

I Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

I Use texture compression, it’s (mostly) free!
I typically: 1:6 compression, 30 dB
I supported in hardware
I different standards, best bet: DXT
I caution however if using textures for other things than images

I Biggest bottlenecks: overdraw, texture accesses

6/14



OpenGL ES Versions

I 1.x: Fixed Pipeline
I not compatible to 2.0/3.0

7/14



OpenGL ES Versions

I 1.x: Fixed Pipeline
I not compatible to 2.0/3.0

I 2.0: Streamlined OpenGL
I Removed obscure methods
I Optimize existing methods for low pow performance hardware
I Introduce new specialized methods and data structures

7/14



OpenGL ES Versions

I 1.x: Fixed Pipeline
I not compatible to 2.0/3.0

I 2.0: Streamlined OpenGL
I Removed obscure methods
I Optimize existing methods for low pow performance hardware
I Introduce new specialized methods and data structures

I 3.0: “Simple” Extension to 2.0
I more flexible than 2.0
I fully compatible

7/14



Differences

I Only 2 shaders
I Vertex & Fragment
I No Tesselation or Geometry Shaders

8/14



Differences

I Only 2 shaders
I Vertex & Fragment
I No Tesselation or Geometry Shaders

I Removed memory-intensive operations and data structures
I Limited Anti-Aliasing
I 2.0: Textures: only byte data types, only 2D

3.0: also float data types, also 3D textures
I Good support for texture compression

8/14



Differences

I Memory Access
I Vertex buffer: standard in 3.0, optional in 2.0

(available in older iOS)
I Same memory: can pass pointers from CPU to GPU

9/14



Differences

I Memory Access
I Vertex buffer: standard in 3.0, optional in 2.0

(available in older iOS)
I Same memory: can pass pointers from CPU to GPU

I Need to declare precision for shader variables
I Select lesser precision for better performance
I Recommendation: high precision in vertex shader,

medium in fragment shader
I Caution: if the same uniform variable is used in

both vertex and fragment shader it has to have
the same precision in both

9/14



Differences

OpenGL 3.0 OpenGL ES

10/14



Which version to use?

I 1.x:

I 2.0:

I 3.0:

11/14



Which version to use?

I 1.x: Too old, limited

I 2.0:

I 3.0:

11/14



Which version to use?

I 1.x: Too old, limited

I 2.0:

I 3.0: Still too new?
I Android: since 4.3
I iOS: since 7 (older phones and pads might not support it)
I Blackberry: since 10.2

11/14



Which version to use?

I 1.x: Too old, limited

I 2.0: Best bet, should offer enough flexibility for
most purposes

I 3.0: Still too new?
I Android: since 4.3
I iOS: since 7 (older phones and pads might not support it)
I Blackberry: since 10.2

11/14



Future version(s)

I OpenGL ES completely a subset of OpenGL
I Even more so than today
I Cross-platform development

12/14



Future version(s)

I OpenGL ES completely a subset of OpenGL
I Even more so than today
I Cross-platform development
I High-end SOCs: can use normal OpenGL, but low-end not!
I also: OpenGL ES might be faster

12/14



Future version(s)

I OpenGL ES completely a subset of OpenGL
I Even more so than today
I Cross-platform development
I High-end SOCs: can use normal OpenGL, but low-end not!
I also: OpenGL ES might be faster

I Tesselation ?

12/14



Market overview

I ARM
I THE SOC CPU
I Licensing rather than selling

13/14



Market overview

I ARM
I THE SOC CPU
I Licensing rather than selling
I GPU core: Mali

Only middle-class performance
Cheap? Good for high resolution?

13/14



Market overview

I ARM
I THE SOC CPU
I Licensing rather than selling
I GPU core: Mali

Only middle-class performance
Cheap? Good for high resolution?

I Imagination Technologies: PowerVR
I Traditionally best architecture
I GPU used in the Dreamcast
I Also licensing core, not selling chips

13/14



Market overview

I Qualcomm: Snapdragon
I Chip manufacturer
I ARM CPUs, Own GPU: Adreno (former ATI)
I Currently fastest (due to fast memory access?)

13/14



Market overview

I Qualcomm: Snapdragon
I Chip manufacturer
I ARM CPUs, Own GPU: Adreno (former ATI)
I Currently fastest (due to fast memory access?)

I NVIDIA: Tegra
I Chip including ARM CPUs and own GPU

13/14



Conclusion

I Smartphones/Tablets: big and still fast growing market
I Directly linked to SOC architecture

=> unlikely to change
I Memory Access: expensive, performance-/memory-gap will

only get worse

I OpenGL ES: streamlined OpenGL designed for these
systems

I Biggest challenge: minimize memory footprint
I But be aware: you can break the rules...
I ...just as long as you know what you are doing

14/14



Questions?




