nnnnnnnnnnnnnnnn

Jens Ogniewski
Information Coding Group
Linkoping University

INFORMATION CODING
.

.
J i
o %@, Uinkoping Universty

» Introduction / Motivation
» Good Practice

» OpenGL ES - Differences

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Introduction / Motivation

» NVIDIA: every GPU architecture we develop will be
mobile-first

1/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Introduction / Motivation

» NVIDIA: every GPU architecture we develop will be
mobile-first

» PCs (incl. laptops) sales declining, smartphones/tablets
fast rising
» Will smartphones/tablets replace PCs?

1/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Introduction / Motivation

» NVIDIA: every GPU architecture we develop will be
mobile-first

» PCs (incl. laptops) sales declining, smartphones/tablets
fast rising
» Will smartphones/tablets replace PCs?

» Driving factors: cheaper, smaller, longer runtime
» due to different architecture (so called System-on-a-Chip (SOC))

1/14

INFORMATION CODING
'@ Linkaping Univensty

Introduction / Motivation

PCle x16 GPU

=Ty
Cache Coherent Interconnect

aceise aceise aceine
Dynamic Memory Controller Network Interconnect
DMC-400 Corelh NIC-400 corers

SATA Bus

"
)
DORILPODR? DORALPDDR?

PC SOC

2/14

nnnnnnnnnnnnnnnn

Introduction / Motivation

PC

» Distributed memory and
caches

SOC

» Shared memory, small caches
(if at all)

3/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Introduction / Motivation

PC
» Distributed memory and

caches

» Several broad, often
star-organized busses

SOC

» Shared memory, small caches
(if at all)

» One central bus, limited size

3/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Introduction / Motivation

PC SOC
» Distributed memory and » Shared memory, small caches
caches (if at all)
» Several broad, often » One central bus, limited size

star-organized busses

» Optimized for Performance » Optimized for Efficiency

3/14

nnnnnnnnnnnnnnnn

Introduction / Motivation
K1

4/14

nnnnnnnnnnnnnnnn

Introduction / Motivation

Performance Memory Bandwidth
(GFLOPS) (GB/s)
K1 365 17

4/14

Introduction / Motivation

K1
Performance Memory Bandwidth
(GFLOPS) (GB/s)
K1 365 17
GeForce GTX 780 Tl 5000 336

4/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Introduction / Motivation

K1
Performance Memory Bandwidth
(GFLOPS) (GB/s)
K1 365 17
GeForce GTX 780 Tl 5000 336
Speedup (Graphics card) x13.7 x19.8

4/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Introduction / Motivation

K1
Performance Memory Bandwidth
(GFLOPS) (GB/s)
K1 365 17
GeForce GTX 780 Tl 5000 336
Speedup (Graphics card) x13.7 x19.8
Compares to 7 years old 12 years old

graphic-card

4/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Best Practice

» Procedural methods often better than precomputed

5/14

.. o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Best Practice

» Procedural methods often better than precomputed

» Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

5/14

.. o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Best Practice

» Procedural methods often better than precomputed

» Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

» Don’t use double, reduce precision or use
fix-point if possible

5/14

Best Practice

Procedural methods often better than precomputed

Don’t use memory intense data structures like
framebuffers, 3D textures, etc. if not absolutely necessary

Don’t use double, reduce precision or use
fix-point if possible

Use ifs only to avoid memory accesses or heavy
computations
» Might however be less useful when core count increases

5/14

* INFORMATION CODING
o ®@ \inkoping Universit

'@ Urkipig Unversy
[]

Best Practice

» Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables

» Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

6/14

Best Practice

» Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables
» Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

» Use texture compression, it’s (mostly) free!

typically: 1:6 compression, 30 dB

supported in hardware

different standards, best bet: DXT

caution however if using textures for other things than images

v

vV vy

6/14

Best Practice

» Avoid irregular access of textures or data arrays in the
shader as well as loops based on variables
» Rule of thumb: uniforms can be ok, varyings sometimes,
others are worse

» Use texture compression, it’s (mostly) free!

typically: 1:6 compression, 30 dB

supported in hardware

different standards, best bet: DXT

caution however if using textures for other things than images

v

vV vy

» Biggest bottlenecks: overdraw, texture accesses

6/14

nnnnnnnnnnnnnnnn

OpenGL ES Versions

» 1.x: Fixed Pipeline
» not compatible to 2.0/3.0

7/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

OpenGL ES Versions

» 1.x: Fixed Pipeline
» not compatible to 2.0/3.0

» 2.0: Streamlined OpenGL
» Removed obscure methods

» Optimize existing methods for low pow performance hardware
» Introduce new specialized methods and data structures

7/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

> 1.x:

>

» 2.0:

OpenGL ES Versions

Fixed Pipeline
not compatible to 2.0/3.0

Streamlined OpenGL

» Removed obscure methods
» Optimize existing methods for low pow performance hardware
» Introduce new specialized methods and data structures

: “Simple” Extension to 2.0

» more flexible than 2.0
» fully compatible

7/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Differences

» Only 2 shaders

» Vertex & Fragment
» No Tesselation or Geometry Shaders

8/14

Differences

» Only 2 shaders

» Vertex & Fragment
» No Tesselation or Geometry Shaders

» Removed memory-intensive operations and data structures

> Limited Anti-Aliasing

> 2.0: Textures: only byte data types, only 2D
3.0: also float data types, also 3D textures

» Good support for texture compression

8/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Differences

» Memory Access

» Vertex buffer: standard in 3.0, optional in 2.0
(available in older iOS)
» Same memory: can pass pointers from CPU to GPU

9/14

Differences

» Memory Access

» Vertex buffer: standard in 3.0, optional in 2.0
(available in older iOS)
» Same memory: can pass pointers from CPU to GPU

» Need to declare precision for shader variables

> Select lesser precision for better performance

» Recommendation: high precision in vertex shader,
medium in fragment shader

» Caution: if the same uniform variable is used in
both vertex and fragment shader it has to have
the same precision in both

9/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Differences
OpenGL 3.0 OpenGL ES

precision mediump float;
uniform sampler2D tex; uniform sampler2D tex;
in vec2 coord; varying vec2 coord;

out vec4d outColor;
void main (void) void main(void)
{ {

outColor=texture (tex, coord) ; gl FragColor=texture2D(tex,coord);

} }

10/14

nnnnnnnnnnn

Which version to use?

> 1.x:
» 2.0:

» 3.0:

11/14

nnnnnnnnnnnnnnn

Which version to use?

» 1.x: Too old, limited
» 2.0:

» 3.0:

11/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Which version to use?

» 1.x: Too old, limited
» 2.0:
» 3.0: Still too new?

» Android: since 4.3

» i0S: since 7 (older phones and pads might not support it)
» Blackberry: since 10.2

11/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Which version to use?

» 1.x: Too old, limited

» 2.0: Best bet, should offer enough flexibility for
most purposes

» 3.0: Still too new?
» Android: since 4.3

» iOS: since 7 (older phones and pads might not support it)
» Blackberry: since 10.2

11/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Future version(s)

» OpenGL ES completely a subset of OpenGL

» Even more so than today
» Cross-platform development

12/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Future version(s)

» OpenGL ES completely a subset of OpenGL

» Even more so than today

Cross-platform development

High-end SOCs: can use normal OpenGL, but low-end not!
also: OpenGL ES might be faster

vV vy

12/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Future version(s)

» OpenGL ES completely a subset of OpenGL

» Even more so than today

Cross-platform development

High-end SOCs: can use normal OpenGL, but low-end not!
also: OpenGL ES might be faster

vV vy

» Tesselation ?

12/14

nnnnnnnnnnnnnnnn

Market overview

» ARM

» THE SOC CPU
> Licensing rather than selling

13/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Market overview

» ARM

» THE SOC CPU

> Licensing rather than selling

» GPU core: Mali
Only middle-class performance
Cheap? Good for high resolution?

13/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Market overview

» ARM

» THE SOC CPU

> Licensing rather than selling

» GPU core: Mali
Only middle-class performance
Cheap? Good for high resolution?

» Imagination Technologies: PowerVR

» Traditionally best architecture
» GPU used in the Dreamcast
» Also licensing core, not selling chips

13/14

o o INORMATIONCODNG
° ‘. '@ Linkaping Univensty

Market overview

» Qualcomm: Snapdragon

» Chip manufacturer
» ARM CPUs, Own GPU: Adreno (former ATI)
» Currently fastest (due to fast memory access?)

13/14

.‘ o, INFORMATION CODING
° ‘o '@ Linkaping Unvesty

Market overview

» Qualcomm: Snapdragon

» Chip manufacturer
» ARM CPUs, Own GPU: Adreno (former ATI)
» Currently fastest (due to fast memory access?)

» NVIDIA: Tegra
» Chip including ARM CPUs and own GPU

13/14

Conclusion

» Smartphones/Tablets: big and still fast growing market
> Directly linked to SOC architecture

=> unlikely to change
» Memory Access: expensive, performance-/memory-gap will

only get worse

» OpenGL ES: streamlined OpenGL designed for these
systems

» Biggest challenge: minimize memory footprint

» But be aware: you can break the rules...
> ...just as long as you know what you are doing

14/14

INFORMATION CODING

.
..‘ .. Linkbping University
L]

Questions?

Thank you very much!

www.icg.isy.liu.se

