

Interpolating Splines

Jens Ogniewski Information Coding Group Linköping University

Spline Interpolation

Common problem: need a smooth interpolation

smooth = higher continuity than c0

- c1 enough for most purposes, e.g. animation
- camera movement: g2 might be better

Other characteristics

- affine invariant: all blend weights always add up to one
- local control: each control-point influences only a limited number of calculated points

1/9-

Spline Interpolation

Here:

- only polynomial of 3rd degree
- affine invariant, local control
- c1 continuous

Cardinal Spline

- Specified by control points
- Shape can be varied by a tension parameter t
- Calculated from 4 control points, define the curve between the middle two

 $P_{+2}O$

3/9

- ⁰ P₋₁
- Even called Catmull-Rom (for t=0?)

Catmull-Rom Spline ($\alpha = 0.5$)

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1/2 & 3/2 & -3/2 & 1/2 \\ 1 & -5/2 & 2 & -1/2 \\ -1/2 & 0 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

$$P(u) = p_{k-1} (-u^3/2 + u^2 - u/2) + \\ p_k (3u^3/2 - 5u^2/2 + 1) + \\ p_{k+1} (-3u^3/2 + 2u^2 + u/2) + \\ p_{k+2} (u^3/2 - u^2/2)$$

 $= p_{k-1}^{*}CAR_{0}(u) + p_{k}^{*}CAR_{1}(u) + p_{k+1}^{*}CAR_{2}(u) + p_{k+2}^{*}CAR_{3}(u)$

5/9-

Ogniewski (?) Splines

- Realtime applications: future points not known
- Could be extrapolated, but will lead to discontinuities
- Can we do interpolation without future points?

Ogniewski (?) Splines

$$\begin{array}{l} (-\alpha u^{3}+2\alpha u^{2}-\alpha u) \ P_{\text{-1}} \\ (2u^{3}+(-3{\text{-}}\alpha)u^{2}+\alpha u+1) \ P_{\text{-1}} \\ ((\alpha{\text{-}}2)u^{3}+(3{\text{-}}\alpha)u^{2}) \ P_{\text{+1}} \end{array}$$

Cardinal Spline: centripetal parameterization

$$S_0 = 0,$$

$$S_{i+1} = |P_i - P_{i+1}|^{0.5} + s_i$$

Cem Yuksel, Scott Schaefer, John Keyser: Parameterization and applications of Catmull-Rom curves, 2011

8/9

Conclusion

Object representation

- Polyhedra
- Quadric
- Constructive Geometry

Splines

- Approximation spline (mostly used for Object representation)
- Interpolating spline (mostly used for Animation)

Don't forget: the important think is how the result looks, not the method!

9/9

Thank you very much!

www.icg.isy.liu.se