

Splines



Originally a drafting tool to create a smooth curve

In compute graphics: a curve built from sections, each described by 3rd degree polynomial.

Very common in non-real-time graphics, both 2D and 3D!

Useful also for real-time.

Applications of splines

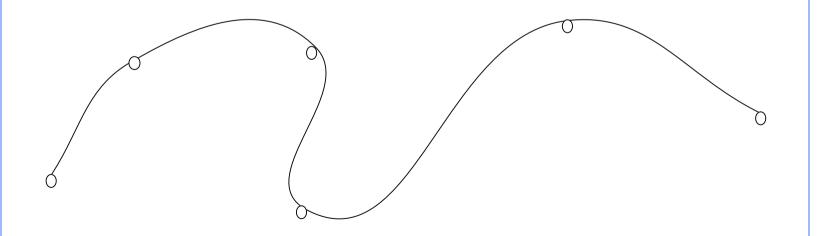
- Designing smooth curves (common in 2D illustrations)
 - Modelling smooth surfaces
 - Representating of smooth surfaces (converted to polygons in real-time)
 - Animation paths

Important application of splines: Text rendering!

We will return to that subject on a later lecture.

Control points

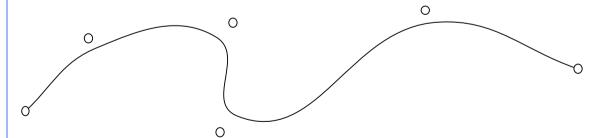
A spline is specified by a set of control points.



Interpolation spline

Control points on the curve.

Approximation spline



Control points not on the curve.

Parametric representation

$$x = x(u)$$

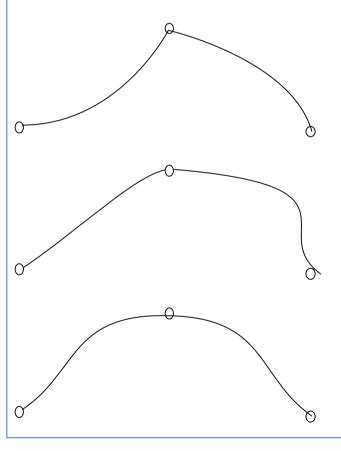
$$y = y(u)$$

$$u_1 \le u \le u_2$$

$$z = z(u)$$

A set of functions for each coordinate

Parametric continuity



C⁰ = continuous position = the curves meet

C¹ = continuous direction = the curves meet at same angle

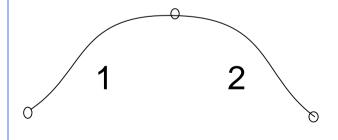
C² = continuous curvature = the curves meet at same bend

Specification of splines by functions

$$x_1(u) = a_{x1}u^3 + b_{x1}u^2 + c_{x1}u + d_{x1}$$

$$y_1(u) = a_{y1}u^3 + b_{y1}u^2 + c_{y1}u + d_{y1}$$

$$z_1(u) = a_{z1}u^3 + b_{z1}u^2 + c_{z1}u + d_{z1}$$

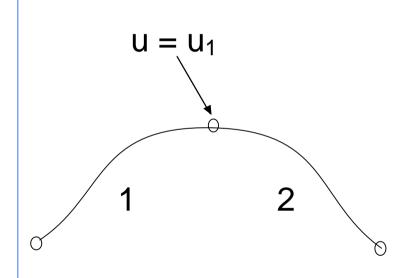


$$x_2(u) = a_{x2}u^3 + b_{x2}u^2 + c_{x2}u + d_{x2}$$

$$y_2(u) = a_{y2}u^3 + b_{y2}u^2 + c_{y2}u + d_{y2}$$

$$z_2(u) = a_{z2}u^3 + b_{z2}u^2 + c_{z2}u + d_{z2}$$

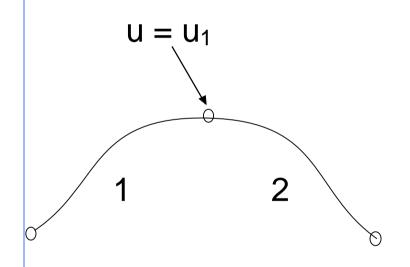
Parametric continuity



$$C^0$$
:
 $x_1(u_1) = x_2(u_1)$
 $y_1(u_1) = y_2(u_1)$
 $z_1(u_1) = z_2(u_1)$
 C^1 :
 $x'_1(u_1) = x'_2(u_1)$
 $y'_1(u_1) = y'_2(u_1)$
 $z'_1(u_1) = z'_2(u_1)$

C1: 6 equations per vertex, 12 coefficients per section

Geometric continuity



$$G^{0}$$
:
 $x_{1}(u_{1}) = x_{2}(u_{1})$
 $y_{1}(u_{1}) = y_{2}(u_{1})$
 $z_{1}(u_{1}) = z_{2}(u_{1})$
 G^{1} :
 $x'_{1}(u_{1}) = k^{*}x'_{2}(u_{1})$
 $y'_{1}(u_{1}) = k^{*}y'_{2}(u_{1})$
 $z'_{1}(u_{1}) = k^{*}z'_{2}(u_{1})'$
for some k

Essentially one less constraint

Blending functions

Rewrite parametric form to a set of polynomials, one polynomial for each control point

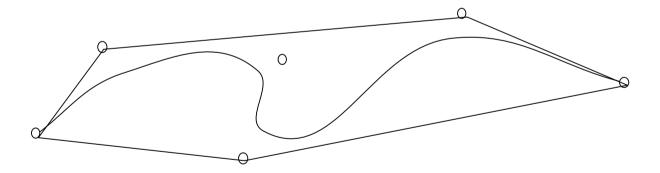
Approximation splines

Use a set of blending functions to blend together control points to points on the curve

Bézier curves B-splines NURBS

Common demand on approximations splines:

Stay within the convex hull of the control points!



Convex hull = minimal convex polygon enclosing a specified set of points