

Lecture 13

Object representation:
Quadrics
Splines
Bézier patches

(Chapter 8.5-)

Information Coding / Computer Graphics, ISY, LiTH

3D object representation

In order of importance:

- Polygonal
- Bi-cubic parametric patches
- Procedural representation, fractals
 - Constructive solid geometry
- Implicit representation by quadrics

Also: Volumes, point-based methods...

Polygonal representations

Dominant in real-time graphics Less suited for off-line rendering

Vertex table

v1 = x1, y1, z1

v2 = x2, y2, z2 v3 = x3, y3, z3

v4 = x4, y4, z4

v5 = x5, y5, z5

Surface table

s1 = v1, v2, v3

s2 = v2, v5, v3 s3 = v1, v3, v5, v4

Information Coding / Computer Graphics, ISY, LiTH

Implicit representations: Quadric surfaces

Surfaces represented by second-degree polynomials

Sphere Ellipsoid Torus Cone

Sphere

Equation:

$$x^2 + y^2 + z^2 = r^2$$

Parametric:

$$x = r \cos \phi \cos \theta$$

 $y = r \cos \phi \sin \theta$
 $z = r \sin \phi$

$$-\pi/2 \le \phi \le \pi/2$$

 $-\pi \le \theta \le \pi$

Information Coding / Computer Graphics, ISY, LiTH

Ellipsoid Equation:

$$x^2/r_x^2 + y^2/r_y^2 + z^2/r_z^2 = 1$$

Parametric:

$$\begin{aligned} \mathbf{x} &= \mathbf{r}_{\mathsf{x}} \cos \phi \cos \theta \\ \mathbf{y} &= \mathbf{r}_{\mathsf{y}} \cos \phi \sin \theta \\ \mathbf{z} &= \mathbf{r}_{\mathsf{z}} \sin \phi \end{aligned}$$

$$-\pi/2 \le \phi \le \pi/2$$

 $-\pi \le \theta \le \pi$

Torus

Rotate a circle around an axis Equation:

$$(r - sqrt(x^2/r_x^2 + y^2/r_y^2))^2 + z^2/r_z^2 = 1$$

Parametric:

$$x = r_x (r + \cos \phi) \cos \theta$$

 $y = r_y (r + \cos \phi) \sin \theta$
 $z = r_z \sin \phi$

 $-\pi \le \phi \le \pi$ $-\pi \le \theta \le \pi$

Information Coding / Computer Graphics, ISY, LiTH

Quadric surfaces

Limited possibilities. Slightly more freedom can be achieved with "superquadrics"

Many quadric surfaces are hard to rotate freely

Rendering packages replace them with meshes (polygons or curved surfaces)

Are quadrics outdated?

Superquadrics:

Example: Superellipse

$$x = r_x \cos \theta$$

 $y = r_y \sin \theta$

$$s = 0.1$$

$$(x/r_x)^{2/s} + (y/r_y)^{2/s} = 1$$

$$s = 5.0$$

$$\langle \rangle$$

$$s = 0.5$$

$$s = 1.0$$

$$s = 1.0$$
 $s = 1.5$ $s = 2.0$

$$s = 2.0$$

$$s = 2.5$$

Information Coding / Computer Graphics, ISY, LiTH

Quadric surfaces in OpenGL

Calls that approximate quadric surfaces by polygons

> glutWireSphere/glutSolidSphere glutWireCone/glutSolidCone glutWireTorus/glutSolidTorus

Constructive Solid Geometry

Define shapes by Boolean operations on other shapes

Union (a or b)

Difference (a and not b)

Intersection (a and b)

Information Coding / Computer Graphics, ISY, LiTH

Constructive Solid Geometry

Good shapes in somewhat useful.

Limited shapes in - limited results.

Splines

Originally a drafting tool to create a smooth curve

In compute graphics: a curve built from sections, each described by 3rd degree polynomial.

Very common in non-real-time graphics, both 2D and 3D!

Useful also for real-time.

Information Coding / Computer Graphics, ISY, LiTH

Applications of splines

- Designing smooth curves (common in 2D illustrations)
 - Modelling smooth surfaces
 - Representating of smooth surfaces (converted to polygons in real-time)
 - Animation paths

Control points

A spline is specified by a set of control points.

Information Coding / Computer Graphics, ISY, LiTH

Interpolation spline

Control points on the curve.

Approximation spline

Control points not on the curve.

Parametric representation

$$x = x(u)$$

$$y = y(u)$$

$$u_1 \le u \le u_2$$

$$z = z(u)$$

A set of functions for each coordinate Natural splines

Information Coding / Computer Graphics, ISY, LiTH

Parametric continuity

C⁰ = continuous position = the curves meet

C¹ = continuous direction = the curves meet at same angle

C² = continuous curvature = the curves meet at same bend

Specification of splines by functions

$$x_1(u) = a_{x1}u^3 + b_{x1}u^2 + c_{x1}u + d_{x1}$$

$$y_1(u) = a_{y1}u^3 + b_{y1}u^2 + c_{y1}u + d_{y1}$$

$$z_1(u) = a_{z1}u^3 + b_{z1}u^2 + c_{z1}u + d_{z1}$$

$$x_2(u) = a_{x2}u^3 + b_{x2}u^2 + c_{x2}u + d_{x2}$$

$$y_2(u) = a_{y2}u^3 + b_{y2}u^2 + c_{y2}u + d_{y2}$$

$$z_2(u) = a_{z2}u^3 + b_{z2}u^2 + c_{z2}u + d_{z2}$$

Information Coding / Computer Graphics, ISY, LiTH

Parametric continuity

$$C^0$$
: $x_1(u_1) = x_2(u_1)$

$$y_1(u_1) = y_2(u_1)$$

$$z_1(u_1) = z_2(u_1)$$

C₁

$$x'_1(u_1) = x'_2(u_1)$$

$$y'_1(u_1) = y'_2(u_1)$$

$$z'_1(u_1) = z'_2(u_1)$$

C1: 6 equations per vertex, 12 coefficients per section

Geometric continuity

$$G^{0}$$
:
 $x_{1}(u_{1}) = x_{2}(u_{1})$
 $y_{1}(u_{1}) = y_{2}(u_{1})$
 $z_{1}(u_{1}) = z_{2}(u_{1})$
 G^{1} :
 $x'_{1}(u_{1}) = k*x'_{2}(u_{1})$
 $y'_{1}(u_{1}) = k*y'_{2}(u_{1})$
 $z'_{1}(u_{1}) = k*z'_{2}(u_{1})'$
for some k

Essentially one less constraint

Information Coding / Computer Graphics, ISY, LiTH

Natural cubic splines

C² continuity Solve the entire equation system!

Natural splines

Drawbacks:

Complex equation system!
Minor problem.

Moving one point changes all sections.

Major problem!

Information Coding / Computer Graphics, ISY, LiTH

Blending functions

Rewrite parametric form to a set of polynomials, one polynomial for each control point

Approximation splines

Use a set of blending functions to blend together control points to points on the curve

Bézier curves B-splines NURBS

Information Coding / Computer Graphics, ISY, LiTH

Common demand on approximations splines:

Stay within the convex hull of the control points!

Convex hull = minimal convex polygon enclosing a specified set of points

Bézier curves

Typically uses 4 control points per section

Information Coding / Computer Graphics, ISY, LiTH

Bézier curves

The 4 points are blended together using 4 blending functions

Bézier curves

Blending functions: Bernstein polynomials

$$BEZ_{0,3} = (1-u)^3$$

 $BEZ_{1,3} = 3u(1-u)^2u$
 $BEZ_{2,3} = 3(1-u)u^2$
 $BEZ_{3,3} = u^3$

The sum is 1 for any u

Information Coding / Computer Graphics, ISY, LiTH

$$BEZ_{0,3} = (1-u)^3$$

 $BEZ_{1,3} = 3u(1-u)^2u$
 $BEZ_{2,3} = 3(1-u)u^2$
 $BEZ_{3,3} = u^3$

$$P(u) = P_0*(1-u)^3 + P_1*3u(1-u)^2 + P_2*3(1-u)u^2 + P_3*u^3$$

$$= \sum_{i=1}^{3} P_i * BEZ_{i,3}(u)$$

Fitting together sections

G₀ continuity: just fit the points

G₁ continuity: Make sure the tangents are equal along the edge.
Simple method: Put 3 points in a line

Information Coding / Computer Graphics, ISY, LiTH

Blending functions for interpolation spline

The points are *blended* together using blending functions

Cardinal splines Catmull-Rom splines

Interpolation spline

Specified only by control points

Calculated from 4 closest control points

A tension parameter t can adjust the shape

t = 0 => Catmull-Rom

0

Information Coding / Computer Graphics, ISY, LiTH

Catmull-Rom splines, Matrix form

$$P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} -1/2 & 3/2 & -3/2 & 1/2 \\ 1 & -5/2 & 2 & -1/2 \\ -1/2 & 0 & 1/2 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix}$$

$$P(u) = p_{k-1} (-u^3/2 + u^2 - u/2) + p_k (3u^3/2 - 5u^2/2 + 1) + p_{k+1} (-3u^3/2 + 2u^2 + u/2) + p_{k+2} (u^3/2 - u^2/2)$$

=
$$p_{k-1}^*CAR_0(u) + p_k^*CAR_1(u) + p_{k+1}^*CAR_2(u) + p_{k+2}^*CAR_3(u)$$

Catmull-Rom splines, Blending functions

Information Coding / Computer Graphics, ISY, LiTH

B-splines B = basis function

Uniform cubic B-spline

Approximating spline similar to Catmull-Rom; all control points have the same role (unlike Bézier).

0

0

NURBs/NURBS

Non-Uniform Rational B-spline.

Popular in CAD programs.

Can exactly represent all quadric curves.

Information Coding / Computer Graphics, ISY, LiTH

Bézier surfaces

A surface is built from a set of Bézier patches

A Bézier patch consists of 16 control points in a 4x4 grid

Bézier surfaces

Blending of the 16 control points as a 2dimensional sum

$$P(u,v) = \sum_{j=0}^{3} \sum_{k=0}^{3} p_{j,k} BEZ_{j,3}(v) BEZ_{k,3}(u)$$

Information Coding / Computer Graphics, ISY, LiTH

Bézier surface example

Fitting together patches

Fit in both u and v direction

Make a 3x3 "joystick" at each corner

Evaluators

Built-in functions for drawing Bezier curves. It calculates the curve with the desired density, and creates line segments.

Ingemar Ragnemalm ingis@isy.liu.se

Evaluators

Configure with glMap

Evaluate element by element with glEvalCoord or all at once with glEvalMesh

Evaluators

glEvalMesh practical if uniforms steps are desired:

```
glMap1f(GL_MAP1_VERTEX_3, u0, u1, 3, 4, &data2[0][0]);
glEnable(GL_MAP1_VERTEX_3);
glMapGrid1f(20, 0, 1);
glEvalMesh1(GL_LINE, 0, 20);

The entire loop in one call (two, actually)
```

Evaluators

Same thing in 2D!

```
glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4, 0, 1, 12, 4, &data2d[0][0][0]);
glEnable(GL_MAP2_VERTEX_3);
glMapGrid2f(20, 0, 1, 20, 0, 1);
glEvalMesh2(GL_FILL, 0, 20, 0, 20);
```


Evaluators

Obviously useful for modelling smooth shapes.

Easy to implement level-of-detail

Good for e.g. modelling cloth.

Can give performance advantages since the calculations can be carried out by the GPU

Evaluating polynomials

Important problem for efficient spline calculations.

- 1) Horner's Rule
- 2) Forward-difference calculations