

Level-of-detail LOD

Multiresolution representations Reducing the polygon count for distant objects

Information Coding / Computer Graphics, ISY, LiTH

Level-of-detail LOD for models

1. Pre-generate in different detail

Risk for noticable "popping" when switching model

2. Progressive mesh

Continuous deformation, no "popping"

Non-trivial to select the polygons to reduce

At very low resolutions, we may switch to impostors (billboards)

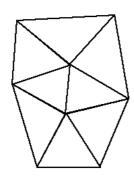
Reduction methods

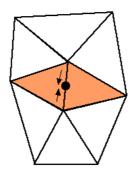
Collapse edges

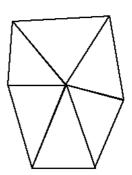
Insert new vertex, remove neighbors, re-triangulate

Remove vertices

Remove vertices, re-triangulate (similar)

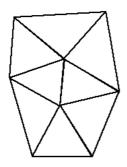

Find neighbor polygons in the same plane (or near), and merge them.

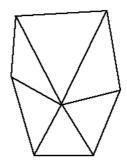

Note that only some can be progressive!



Information Coding / Computer Graphics, ISY, LiTH

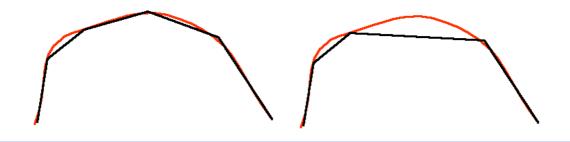
Edge collapsing




Simple - but vertex attributes (normals, texture coords) must be recalculated

Vertex removal

Simple - no recalculation of vertex attributes



Information Coding / Computer Graphics, ISY, LiTH

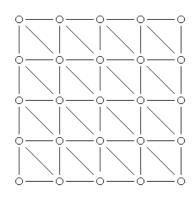
Problem in LOD: volume reduction

The mesh is a sampling of a continuous surface

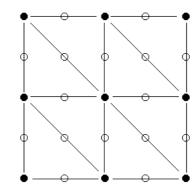
Careless removal or interpolation will cause errors

Level-of-detail LOD for terrains

Geometrical mip-mapping


Produces a polygon terrain with approximately constant polygon size in screen coordinates

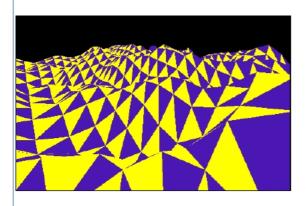
Reduces the polygon count effectively to what is actually needed.

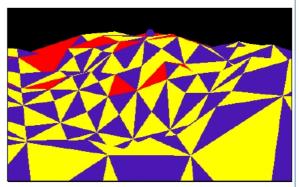


Information Coding / Computer Graphics, ISY, LiTH

Geometrical mip-mapping

Level 0 - full resolution

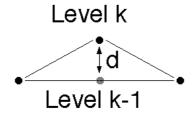

Level 1



Geometrical mip-mapping

No geomipmapping - polygon density grows with distance

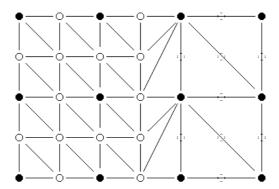
With geomipmapping - polygon density similar on all distances



Information Coding / Computer Graphics, ISY, LiTH

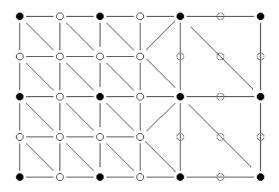
Decide resolution level

- · distance
- screen-space error measures


Problems to solve in geomipmapping

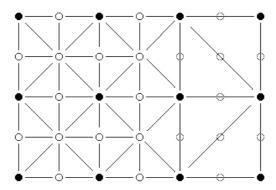
- Popping
 - Gaps
- Sliding textures bug

Information Coding / Computer Graphics, ISY, LiTH


Patching edges between different levels

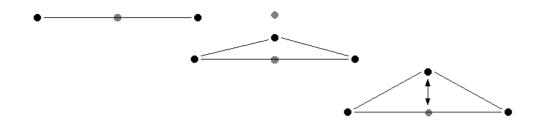
Patching edges between different levels

Second approach



Information Coding / Computer Graphics, ISY, LiTH

Patching edges between different levels


Ingemar's favourite

Popping is solved by "morphing" between levels.

Interpolate vertices that are close to removal with the average between neighbors

Information Coding / Computer Graphics, ISY, LiTH

Geomipmapping

- should produce polygons with roughly the same size on all distances
 - will greatly reduce polygon count on very large terrains with large "far" distance