
Information Coding / Computer Graphics, ISY, LiTH

Lecture 7

Programmable shaders

The OpenGL Shading Language



Information Coding / Computer Graphics, ISY, LiTH

The 3D pipeline in the GPU
Low-level operations from vertices to pixel data

ertex 
rocessor

ertex coordinates
nd normal vectors

ransformed 
oordinates

rimitive 
ssembly

rimitives, 
onnectivity

riangles etc

aster 
onversion

lip, cull

ragment 
rocessor ixel coord

ragment 
perations

rame buffer 
perations

color, texture

Texture



Information Coding / Computer Graphics, ISY, LiTH

The vertex processor
The vertex processor handles the following tasks:

• Vertex transformation (from model cordinates to screen 
coordinates)

• Transformation of normal vectors

• Generation of texture coordinates

• Transformation of texture coordinates

• Lighting calculations

• Material parameters



Information Coding / Computer Graphics, ISY, LiTH

Primitive assembly

Assembly of primitives

Primitive” not as in simple but as in geometrical 
rimitives

ransformed coordinates are collected into 
tructures for each triangle, quad etc.



Information Coding / Computer Graphics, ISY, LiTH

Clipping and culling

rimitives are clipped to screen borders. 
ackface culling is performed.

ote that texture coordinates also needs 
lipping (as well as any other data that is 
nterpolated between vertices).



Information Coding / Computer Graphics, ISY, LiTH

Raster conversion

Polygon rendering, convert polygons to 
pixel coordinates

Creates “fragments”. Note that they do not 
have any colors yet!



Information Coding / Computer Graphics, ISY, LiTH

The fragment processor

rom pixel coordinates and interpolated data 
or color, texture etc, calculate a color for the 
ragment.

• Shading

• Texturing

• Fog

• Color calculations



Information Coding / Computer Graphics, ISY, LiTH

Fragmentoperationer

Final operations before the fragment is 
written to a frame buffer pixel

• Stencil test
• Z-buffer test
• The blend function (glBlendFunc mm)
• The alpha function (glAlphaFunc)



Information Coding / Computer Graphics, ISY, LiTH

Out of these, two are 
programmable!

ertex 
rocessor

ertex coordinates
nd normal vectors

ransformed 
oordinates

rimitive 
ssembly

rimitives, 
onnectivity

riangles etc

aster 
onversion

lip, cull

ragment 
rocessor ixel coord

ragment 
perations

rame buffer 
perations

color, texture

Texture



Information Coding / Computer Graphics, ISY, LiTH

Out of these, two are 
programmable!

ertex 
rocessor

ertex coordinates
nd normal vectors

ransformed 
oordinates

rimitive 
ssembly

rimitives, 
onnectivity

riangles etc

aster 
onversion

lip, cull

ragment 
rocessor ixel coord

ragment 
perations

rame buffer 
perations

color, texture

Texture



Information Coding / Computer Graphics, ISY, LiTH

Shader programs
Program snippets that are executed per vertex or per 

fragment, on the GPU!

Two programs cooperate, one vertex program and one 
fragment program.

“Shader” implies that the goal is lighting, but that is only 
one of the goals!.

ertex transform
ertexcolor, vertex-level lighting

Texturing
Color and light per pixel

an be done in a 
ertex shader

an be done in a 
ragment shader



Information Coding / Computer Graphics, ISY, LiTH

Vertex shader
Replaces the fixed functionality of the vertex processor.

It can:
• transform vertices, normals and texture coordinates
• generate texture coordinates
• calculate lighting per vertex
• set values for interpolation for use in a fragment shader

It knows nothing about:
 Perspective, viewport

• Frustum
• Primitives (!)
• Culling



Information Coding / Computer Graphics, ISY, LiTH

Fragment shader
(a.k.a pixel shader)

eplaces the fixed functionality of the fragment 
rocessor.

t can:
 set the fragment color
 get color values from textures

• calculate fog and other color calculations
• use any kind of interpolated data from the vertices

It can not
 change the fragment coordinates
 write into textures

• affect stencil, scissor, alpha, depth...



Information Coding / Computer Graphics, ISY, LiTH

Shader languages

Four different:

Assembly language: Old solution, being phased 
out, no longer updated.

Cg: “C for graphics”, NVidia
HLSL: “High-level shading language”, Microsoft
GLSL: “OpenGL shading language”

Choce depends on flatform and needs (and 
aste).


