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Total contribution from one surface

Ispec = ks*Il*(R·V)n

Idiff = kd*Il*L·N

Iamb = kd * Ia

Itotal = Iamb + Idiff  + Ispec
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Polygon shading

Using the illumination
models in high-speed

polygon rendering
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Three ways to render
a shaded polygon:

Flat shading
Gouraud shading
Phong shading
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Flat shading

Intensity calculated once and for all for the whole 
polygon

E.g. Ip = N·L
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Flat shading is “correct” when:

1) The surfaces should be flat, not approximating a 
curved surface

2) Distance to light source high => N·L constant
3) Distance to camera high => V·R constant

and in particular

4) When the problem is not lighting, but something 
else! (Rendering surface identifications)
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Gouraud shading

Intensity calculated 
once per vertex

Each vertex has its own 
surface normal
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Gouraud shading

can simulate curved surfaces fairly well,
but many polygons may be needed, and edges 

remain visible

Built-in in the fixed pipeline - extremely fast
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Phong shading

Each vertex has its own 
surface normal

Normal vectors are 
interpolated
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Phong shading

can simulate curved surfaces very well, even 
with low polygon counts

can be fairly fast with “Fast Phong Shading”, an 
incremental method

Best implemented in shader programs
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Phong shading
≠

The Phong model

Phong Shading doesn’t necessarily use specular 
reflections.

Phong Shading = normal-vector interpolation 
shading
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Light sources in OpenGL

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

Set position with glLightfv:

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Light source position:
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 }; 

Distant light source, direction:
GLfloat light_position[] = { 5.0, 5.0, 2.0, 0.0 }; 
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Light source attributes
Set with glLightfv:

glLightfv(GL_LIGHT0, GL_AMBIENT, amb);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diff);

glLightfv(GL_LIGHT0, GL_SPECULAR, amb);

Select attenuation:

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, b);

glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c);

Distance-attenuation model:

f(d) = 1 / (a + b*d + c*d2)
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Materials in OpenGL
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);

Diffuse and specular values are often the same:

GL_DIFFUSE_AND_SPECULAR

The exponent in the Phong model:

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

A surface can also be self-illuminated:

glMaterialfv(GL_FRONT, GL_EMISSION, emission);
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Ispec = ks*Il*(R·V)n

Iamb = kd * Ia

Itotal = Iamb + Idiff  + Ispec

glMaterialfv
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, 

GL_AMBIENT_AND_DIFFUSE

L_SHININESS

glLightfv(

GL_AMBIENT

GL_DIFFUSE, GL_SPECULAR

Idiff = kd*Il*L·N


