

Polygon shading

Using the illumination models in high-speed polygon rendering

Flat shading is "correct" when:

The surfaces should be flat, not approximating a curved surface
Distance to light source high => N·L constant
Distance to camera high => V·R constant

and in particular

4) When the problem is not lighting, but something else! (Rendering surface identifications)

Gouraud shading

can simulate curved surfaces fairly well, but many polygons may be needed, and edges remain visible

Built-in in the fixed pipeline - extremely fast

Phong shading

can simulate curved surfaces very well, even with low polygon counts

can be fairly fast with "Fast Phong Shading", an incremental method

Best implemented in shader programs

Materials in OpenGL

glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb); glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diff); glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);

Diffuse and specular values are often the same:

GL_DIFFUSE_AND_SPECULAR

The exponent in the Phong model:

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

A surface can also be self-illuminated:

glMaterialfv(GL_FRONT, GL_EMISSION, emission);

