
Information Coding / Computer Graphics, ISY, LiTH

Total contribution from one surface

Ispec = ks*Il*(R·V)n

Idiff = kd*Il*L·N

Iamb = kd * Ia

Itotal = Iamb + Idiff + Ispec

θ θ φ
L N R

V

Information Coding / Computer Graphics, ISY, LiTH

Polygon shading

Using the illumination
models in high-speed

polygon rendering

Information Coding / Computer Graphics, ISY, LiTH

Three ways to render
a shaded polygon:

Flat shading
Gouraud shading
Phong shading

Information Coding / Computer Graphics, ISY, LiTH

Flat shading

Intensity calculated once and for all for the whole
polygon

E.g. Ip = N·L

Information Coding / Computer Graphics, ISY, LiTH

Flat shading is “correct” when:

1) The surfaces should be flat, not approximating a
curved surface

2) Distance to light source high => N·L constant
3) Distance to camera high => V·R constant

and in particular

4) When the problem is not lighting, but something
else! (Rendering surface identifications)

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shading

Intensity calculated
once per vertex

Each vertex has its own
surface normal

Information Coding / Computer Graphics, ISY, LiTH

Gouraud shading

can simulate curved surfaces fairly well,
but many polygons may be needed, and edges

remain visible

Built-in in the fixed pipeline - extremely fast

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

Each vertex has its own
surface normal

Normal vectors are
interpolated

Information Coding / Computer Graphics, ISY, LiTH

Phong shading

can simulate curved surfaces very well, even
with low polygon counts

can be fairly fast with “Fast Phong Shading”, an
incremental method

Best implemented in shader programs

Information Coding / Computer Graphics, ISY, LiTH

Phong shading
≠

The Phong model

Phong Shading doesn’t necessarily use specular
reflections.

Phong Shading = normal-vector interpolation
shading

Information Coding / Computer Graphics, ISY, LiTH

Light sources in OpenGL

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

Set position with glLightfv:

glLightfv(GL_LIGHT0, GL_POSITION, pos);

Light source position:
GLfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };

Distant light source, direction:
GLfloat light_position[] = { 5.0, 5.0, 2.0, 0.0 };

Information Coding / Computer Graphics, ISY, LiTH

Light source attributes
Set with glLightfv:

glLightfv(GL_LIGHT0, GL_AMBIENT, amb);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diff);

glLightfv(GL_LIGHT0, GL_SPECULAR, amb);

Select attenuation:

glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a);
glLightf(GL_LIGHT0, GL_LINEAR_ATTENUATION, b);

glLightf(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c);

Distance-attenuation model:

f(d) = 1 / (a + b*d + c*d2)

Information Coding / Computer Graphics, ISY, LiTH

Materials in OpenGL
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb);
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diff);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);

Diffuse and specular values are often the same:

GL_DIFFUSE_AND_SPECULAR

The exponent in the Phong model:

glMaterialfv(GL_FRONT, GL_SHININESS, shininess);

A surface can also be self-illuminated:

glMaterialfv(GL_FRONT, GL_EMISSION, emission);

Information Coding / Computer Graphics, ISY, LiTH

Ispec = ks*Il*(R·V)n

Iamb = kd * Ia

Itotal = Iamb + Idiff + Ispec

glMaterialfv
GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR,

GL_AMBIENT_AND_DIFFUSE

L_SHININESS

glLightfv(

GL_AMBIENT

GL_DIFFUSE, GL_SPECULAR

Idiff = kd*Il*L·N

